Advertisements
Advertisements
प्रश्न
Prove that `(cot(180^circ + theta) sin(90^circ - theta) cos(- theta))/(sin(270^circ + theta) tan(- theta) "cosec"(360^circ + theta))` = cos2θ cotθ
उत्तर
`(cot(180^circ + theta) sin(90^circ - theta) * cos(- theta))/(sin(270^circ + theta) tan(- theta) "cosec"(360^circ + theta))`
= `(cot theta* costheta costheta)/(- cos theta xx - tantheta xx "cosec" theta)`
= `(cot theta * cos^2theta)/(cos theta tan theta "cosec" theta)`
= `(cot theta * cos^2theta)/(cos theta * sintheta/costheta * 1/sin theta)`
= `cos^2theta * cottheta`
APPEARS IN
संबंधित प्रश्न
Find the values of cos(300°)
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of cos(x − y)
Find the value of tan `(7pi)/12`
Find a quadratic equation whose roots are sin 15° and cos 15°
Expand cos(A + B + C). Hence prove that cos A cos B cos C = sin A sin B cos C + sin B sin C cos A + sin C sin A cos B, if A + B + C = `pi/2`
If a cos(x + y) = b cos(x − y), show that (a + b) tan x = (a − b) cot y
Show that cos2 A + cos2 B – 2 cos A cos B cos(A + B) = sin2(A + B)
If tan x = `"n"/("n" + 1)` and tan y = `1/(2"n" + 1)`, find tan(x + y)
If θ is an acute angle, then find `sin (pi/4 - theta/2)`, when sin θ = `1/25`
Prove that (1 + sec 2θ)(1 + sec 4θ) ... (1 + sec 2nθ) = tan 2nθ
Express the following as a sum or difference
sin 4x cos 2x
Express the following as a product
sin 75° sin 35°
Express the following as a product
sin 50° + sin 40°
Show that `cos pi/15 cos (2pi)/15 cos (3pi)/15 cos (4pi)/15 cos (5pi)/15 cos (6pi)/15 cos (7pi)/15 = 1/128`
Show that `((cos theta -cos 3theta)(sin 8theta + sin 2theta))/((sin 5theta - sin theta) (cos 4theta - cos 6theta))` = 1
If A + B + C = 180°, prove that sin2A + sin2B − sin2C = 2 sin A sin B cos C
If A + B + C = 180°, prove that sin A + sin B + sin C = `4 cos "A"/2 cos "B"/2 cos "C"/2`
If A + B + C = 2s, then prove that sin(s – A) sin(s – B)+ sin s sin(s – C) = sin A sin B
Choose the correct alternative:
`(1 + cos pi/8) (1 + cos (3pi)/8) (1 + cos (5pi)/8) (1 + cos (7pi)/8)` =
Choose the correct alternative:
Let fk(x) = `1/"k" [sin^"k" x + cos^"k" x]` where x ∈ R and k ≥ 1. Then f4(x) − f6(x) =