Advertisements
Advertisements
प्रश्न
Express the following as a product
sin 50° + sin 40°
उत्तर
We know sin C + sin D = `2 sin ("C" + "D")/2 * cos ("C" - "D")/2`
Take C = 50°, D = 40°
sin 50° + sin 40° = `2sin((50^circ + 40^circ)/2) * cos((50^circ - 40^circ)/2)`
sin 50° + sin 40° = `2cos(90^circ/2) * cos(10^circ/2)`
sin 50° + sin 40° = 2 cos(45°) . cos(5°)
APPEARS IN
संबंधित प्रश्न
Find the value of the trigonometric functions for the following:
cos θ = `2/3`, θ lies in the I quadrant
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of cos(x − y)
Prove that sin(π + θ) = − sin θ.
Prove that cos(A + B) cos(A – B) = cos2A – sin2B = cos2B – sin2A
Prove that cos 8θ cos 2θ = cos25θ – sin23θ
Show that cos2 A + cos2 B – 2 cos A cos B cos(A + B) = sin2(A + B)
Prove that cos 5θ = 16 cos5θ – 20 cos3θ + 5 cos θ
Prove that `tan (pi/4 + theta) - tan(pi/4 - theta)` = 2 tan 2θ
Express the following as a sum or difference
sin 4x cos 2x
Express the following as a sum or difference
2 sin 10θ cos 2θ
Express the following as a product
cos 65° + cos 15°
Show that `((cos theta -cos 3theta)(sin 8theta + sin 2theta))/((sin 5theta - sin theta) (cos 4theta - cos 6theta))` = 1
If A + B + C = 180°, prove that sin A + sin B + sin C = `4 cos "A"/2 cos "B"/2 cos "C"/2`
If x + y + z = xyz, then prove that `(2x)/(1 - x^2) + (2y)/(1 - y^2) + (2z)/(1 - z^2) = (2x)/(1 - x^2) (2y)/(1 - y^2) (2z)/(1 - z^2)`
If A + B + C = `pi/2`, prove the following cos 2A + cos 2B + cos 2C = 1 + 4 sin A sin B sin C
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos B – cos C = `- 1 + 2sqrt(2) cos "B"/2 sin "C"/2`
Choose the correct alternative:
cos 1° + cos 2° + cos 3° + ... + cos 179° =