Advertisements
Advertisements
प्रश्न
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos B – cos C = `- 1 + 2sqrt(2) cos "B"/2 sin "C"/2`
उत्तर
A + B + C = 180°
Given A = 90°
∴ B + C = 90°
⇒ `("B" + "C")/2` = 45°
`"B"/2 + "C"/2` = 45°
R.H.S = `- 1 + 2sqrt(2) cos "B"/2 sin "C"/2`
= `1 + sqrt(2) (2cos "B"/2 sin "C"/2)`
We know that 2 cosA sinB = sin(A + B) – sin(A – B)
= `- 1 + sqrt(2) (sin (("B" + "C"))/2 - sin (("B" - "C"))/2)`
= `- 1 + sqrt(2) (sin 45^circ - sin (("B" - "C"))/2)`
= `- 1 + sqrt(2) (1/sqrt(2) - sin (("B" - "C")^2)/2)`
= `- 1 + 1 - sqrt(2) sin (("B" - "C"))/2`
= `- sqrt(2) sin (("B" - "C"))/2` .....(1)
L.H.S = cos B – cos C
= `2 sin (("B" + "C"))/2 sin (("C" - "B"))/2`
= `2 sin 45^circ sin (("C" - "B"))/2`
= `2(1/sqrt(2)) sin ((-("B" - "C"))/2)`
= `- sqrt(2) sin (("B" - "C"))/2` .....(2)
From (1) and (2)
⇒ L.H.S = R.H.S
APPEARS IN
संबंधित प्रश्न
Find the values of `sin (-(11pi)/3)`
Find the value of the trigonometric functions for the following:
tan θ = −2, θ lies in the II quadrant
If sin A = `3/5` and cos B = `9/41, 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of cos(A – B)
Prove that sin 105° + cos 105° = cos 45°
Show that tan 75° + cot 75° = 4
Prove that cos(A + B) cos(A – B) = cos2A – sin2B = cos2B – sin2A
Prove that sin2(A + B) – sin2(A – B) = sin2A sin2B
If cos(α – β) + cos(β – γ) + cos(γ – α) = `- 3/2`, then prove that cos α + cos β + cos γ = sin α + sin β + sin γ = 0
Show that tan(45° + A) = `(1 + tan"A")/(1 - tan"A")`
Find the value of cos 2A, A lies in the first quadrant, when sin A = `4/5`
Prove that sin 4α = `4 tan alpha (1 - tan^2alpha)/(1 + tan^2 alpha)^2`
Express the following as a sum or difference
sin 4x cos 2x
Show that `cos pi/15 cos (2pi)/15 cos (3pi)/15 cos (4pi)/15 cos (5pi)/15 cos (6pi)/15 cos (7pi)/15 = 1/128`
Show that `((cos theta -cos 3theta)(sin 8theta + sin 2theta))/((sin 5theta - sin theta) (cos 4theta - cos 6theta))` = 1
Prove that `(sin x + sin 3x + sin 5x + sin 7x)/(cos x + cos x + cos 5x cos 7x)` = tan 4x
If A + B + C = 180°, prove that sin A + sin B + sin C = `4 cos "A"/2 cos "B"/2 cos "C"/2`
Choose the correct alternative:
If cos 28° + sin 28° = k3, then cos 17° is equal to
Choose the correct alternative:
`(1 + cos pi/8) (1 + cos (3pi)/8) (1 + cos (5pi)/8) (1 + cos (7pi)/8)` =
Choose the correct alternative:
cos 1° + cos 2° + cos 3° + ... + cos 179° =
Choose the correct alternative:
`(sin("A" - "B"))/(cos"A" cos"B") + (sin("B" - "C"))/(cos"B" cos"C") + (sin("C" - "A"))/(cos"C" cos"A")` is