मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

Find the principal solution and general solution of the following:sin θ = -12 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`

बेरीज

उत्तर

sin θ = `-1/sqrt(2)`

We know that principal of sin θ lies in `[ - pi/2, pi/2]`

sin θ = `- 1/sqrt(2 < 0`

∴ The principal value of sin θ lies in the IV quadrant.

sin θ = `- 1/sqrt(2)`

= `- sin(pi/4)`

sin θ = `sin (- pi/4)`

Hence θ = `- pi/4` is the principal solution.

The general solution is

θ = nπ + (– 1)n . `( pi/4)`, n ∈ Z

θ = `"n"pi + (- 1)^("n" + 1) * pi/4`, n ∈ Z

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Trigonometry - Exercise 3.8 [पृष्ठ १३३]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 3 Trigonometry
Exercise 3.8 | Q 1. (i) | पृष्ठ १३३

संबंधित प्रश्‍न

If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that

\[\frac{1 - \cos x + \sin x}{1 + \sin x}\] is also equal to a.

Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]


Prove that

\[\frac{\sin(180^\circ + x) \cos(90^\circ + x) \tan(270^\circ - x) \cot(360^\circ - x)}{\sin(360^\circ - x) \cos(360^\circ + x) cosec( - x) \sin(270^\circ + x)} = 1\]

 


In a ∆ABC, prove that:
cos (A + B) + cos C = 0


Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]


If sec \[x = x + \frac{1}{4x}\], then sec x + tan x = 

 

The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is


If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =

 

If tan θ + sec θ =ex, then cos θ equals


Find the general solution of the following equation:

\[\sin 2x = \cos 3x\]

Find the general solution of the following equation:

\[\tan x + \cot 2x = 0\]

Solve the following equation:
\[\cot x + \tan x = 2\]

 


Solve the following equation:
 sin x tan x – 1 = tan x – sin x

 


If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 sin2x + 1 = 3 sin x


Solve the following equations:
sin 5x − sin x = cos 3


Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`


Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval


If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2 


Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×