Advertisements
Advertisements
प्रश्न
If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =
पर्याय
2
4
8
16
उत्तर
8
We have:
\[x \sin 45^\circ\cos^2 60^\circ = \frac{\tan^2 60^\circ cosec 30^\circ}{\sec45^\circ \cot^2 30^\circ}\]
\[ \Rightarrow x \times \left( \frac{1}{\sqrt{2}} \right) \times \left( \frac{1}{2} \right)^2 = \frac{\left( \sqrt{3} \right)^2 \times \left( 2 \right)}{\left( \sqrt{2} \right) \times \left( \sqrt{3} \right)^2}\]
\[ \Rightarrow \frac{x}{4\sqrt{2}} = \frac{6}{3\sqrt{2}}\]
\[ \Rightarrow x = \frac{6}{3\sqrt{2}} \times 4\sqrt{2}\]
\[ \Rightarrow x = 8\]
APPEARS IN
संबंधित प्रश्न
Find the general solution for each of the following equations sec2 2x = 1– tan 2x
If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]
Prove that: tan 225° cot 405° + tan 765° cot 675° = 0
Prove that
Prove that
If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is
sin6 A + cos6 A + 3 sin2 A cos2 A =
The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is
If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]
Solve the following equation:
`cosec x = 1 + cot x`
Solve the following equation:
3tanx + cot x = 5 cosec x
Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2
If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.
Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]
If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.
Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`
Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`
Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
sin4x = sin2x
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 cos2x + 1 = – 3 cos x
Solve the following equations:
sin θ + cos θ = `sqrt(2)`
Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to
Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval
Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to
Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`