Advertisements
Advertisements
प्रश्न
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
sin4x = sin2x
उत्तर
sin4x – sin2x = 0
sin2 x (sin2 x – 1) = 0
sin2 x [– (1 – sin2 x)] = 0
sin2x × – cos2x = 0
– sin2x cos2x = 0
(sin x cos x)2 = 0
`(1/2 xx 2 sin cos x)^2` = 0
`1/4 sin 2x` = 0
sin 2x = 0
The general solution is
2x = nπ, n ∈ Z
x = `("n"pi)/2`, n ∈ Z
When n = 0, x = `(0 xx pi)/2` = 0 ∉ (0°, 360°)
When n = 1, x = `pi/2` = ∈ (0°, 360°)
When n = 2, x = `(2pi)/2` = π ∈ (0°, 360°)
When n = 3, x = `(3pi)/2` = ∈ (0°, 360°)
When n = 4, x = `(4pi)/2` = 2π ∉ (0°, 360°)
∴ The values of x are `pi/2`, π, `(3pi)/2`
APPEARS IN
संबंधित प्रश्न
Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]
Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0
Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]
Prove that:
Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]
Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]
Prove that:
Prove that:
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =
If tan A + cot A = 4, then tan4 A + cot4 A is equal to
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].
The smallest value of x satisfying the equation
If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).
If \[4 \sin^2 x = 1\], then the values of x are