मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

Solve the following equations for which solution lies in the interval 0° ≤ θ < 360° sin4x = sin2x - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

sin4x = sin2x

बेरीज

उत्तर

sin4x – sin2x = 0

sin2 x (sin2 x – 1) = 0

sin2 x [– (1 – sin2 x)] = 0

sin2x × – cos2x = 0

– sin2x cos2x = 0

(sin x cos x)2 = 0

`(1/2 xx 2 sin cos x)^2` = 0

`1/4 sin 2x` = 0

sin 2x = 0

The general solution is

2x = nπ, n ∈ Z

x = `("n"pi)/2`, n ∈ Z

When n = 0, x = `(0 xx pi)/2` = 0 ∉ (0°, 360°)

When n = 1, x = `pi/2` = ∈ (0°, 360°)

When n = 2, x = `(2pi)/2` = π ∈ (0°, 360°)

When n = 3, x = `(3pi)/2` = ∈ (0°, 360°)

When n = 4, x = `(4pi)/2` = 2π ∉ (0°, 360°)

∴ The values of x are `pi/2`, π, `(3pi)/2`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Trigonometry - Exercise 3.8 [पृष्ठ १३३]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 3 Trigonometry
Exercise 3.8 | Q 2. (i) | पृष्ठ १३३

संबंधित प्रश्‍न

Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]


Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0


Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]

 


Prove that:

\[3\sin\frac{\pi}{6}\sec\frac{\pi}{3} - 4\sin\frac{5\pi}{6}\cot\frac{\pi}{4} = 1\]

 


Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]


Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]


Prove that:

\[\sin\frac{10\pi}{3}\cos\frac{13\pi}{6} + \cos\frac{8\pi}{3}\sin\frac{5\pi}{6} = - 1\]

Prove that:

\[\tan\frac{5\pi}{4}\cot\frac{9\pi}{4} + \tan\frac{17\pi}{4}\cot\frac{15\pi}{4} = 0\]

 


If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to


\[\sec^2 x = \frac{4xy}{(x + y )^2}\] is true if and only if

 


sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =


If tan A + cot A = 4, then tan4 A + cot4 A is equal to


The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is

 

Find the general solution of the following equation:

\[\sin x = \frac{1}{2}\]

Find the general solution of the following equation:

\[\cos 3x = \frac{1}{2}\]

Solve the following equation:

\[\sin x + \cos x = 1\]

Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].


The smallest value of x satisfying the equation

\[\sqrt{3} \left( \cot x + \tan x \right) = 4\] is 

If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).


If \[4 \sin^2 x = 1\], then the values of x are

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×