Advertisements
Advertisements
प्रश्न
Prove that:
उत्तर
\[ \frac{10\pi}{3} = 600^\circ, \frac{13\pi}{6} = 390^\circ, \frac{8\pi}{3} = 480^\circ, \frac{5\pi}{6} = 150^\circ\]
LHS = \[\sin 600^\circ\cos 390^\circ + \cos 480^\circ \sin 150^\circ\]
\[ = \sin \left( 90^\circ \times 6 + 60^\circ \right) \cos\left( 90^\circ \times 4 + 30^\circ \right) + \cos\left( 90^\circ \times 5 + 30^\circ \right) \sin\left( 90^\circ \times 1 + 60^\circ \right)\]
\[ = \left[ - \sin 60^\circ \right] \cos30^\circ + \left[ - \sin 30^\circ \right] \cos 60^\circ\]
\[ = - \sin 60^\circ \cos\left( 30^\circ \right) - \sin 30^\circ \cos 60^\circ\]
\[ = - \frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2} - \frac{1}{2} \times \frac{1}{2}\]
\[ = - \frac{3}{4} - \frac{1}{4}\]
\[ = - 1\]
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `cot x = -sqrt3`
If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that
If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].
If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]
Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]
Prove that
Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to
The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is
If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]
Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]
Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]
Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0
Write the number of points of intersection of the curves
The smallest value of x satisfying the equation
A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval
If \[\cot x - \tan x = \sec x\], then, x is equal to
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
General solution of \[\tan 5 x = \cot 2 x\] is
The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval
Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.