मराठी

If Cot X − Tan X = Sec X , Then, X is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\cot x - \tan x = \sec x\], then, x is equal to

 

पर्याय

  • \[2 n\pi + \frac{3\pi}{2}, n \in Z\]

     

  • \[n\pi + \left( - 1 \right)^n \frac{\pi}{6}, n \in Z\]

  • \[n\pi + \frac{\pi}{2}, n \in Z\]

     

  • none of these.

MCQ
बेरीज

उत्तर

\[n\pi + \frac{\pi}{2}, n \in Z\]
Given equation:
\[cot x - \tan x = sec x\]
\[ \Rightarrow \frac{\cos x}{\sin x} - \frac{\sin x}{\cos x} = \frac{1}{\cos x}\]
\[ \Rightarrow \frac{\cos^2 x - \sin^2 x}{\sin x \cos x} = \frac{1}{\cos x}\]
\[ \Rightarrow \cos^2 x - \sin^2 x = \sin x\]
\[ \Rightarrow (1 - \sin^2 x) - \sin^2 x = \sin x\]
\[ \Rightarrow 1 - 2 \sin^2 x = \sin x\]
\[ \Rightarrow 2 \sin^2 x + \sin x - 1 = 0\]
\[ \Rightarrow 2 \sin^2 x + 2 \sin x - \sin x - 1 = 0\]
\[ \Rightarrow 2 \sin x ( \sin x + 1) - 1 (\sin x + 1) = 0\]
\[ \Rightarrow (\sin x + 1) (2 \sin x - 1) = 0\]
\[\Rightarrow \sin x + 1 = 0\] or
\[2 \sin x - 1 = 0\]
\[\Rightarrow \sin x = - 1\] or
\[\sin x = \frac{1}{2}\]
Now, 
\[\sin x = - 1 \Rightarrow \sin x = \sin \frac{3\pi}{2} \Rightarrow x = m\pi + ( - 1 )^m \frac{3\pi}{2} , m \in Z\]
And,  
\[\sin x = \frac{1}{2} \Rightarrow \sin x = \sin \frac{\pi}{6} \Rightarrow x = n\pi + ( - 1 )^n \frac{\pi}{6} , n \in Z\]
∴ \[x = n\pi + ( - 1 )^n \frac{\pi}{6} , n \in Z\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric equations - Exercise 11.3 [पृष्ठ २७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 11 Trigonometric equations
Exercise 11.3 | Q 11 | पृष्ठ २७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the general solution of the equation cos 4 x = cos 2 x


Find the general solution of the equation sin 2x + cos x = 0


If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]


Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]


If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]

 


Prove that:  tan 225° cot 405° + tan 765° cot 675° = 0


Prove that:cos 570° sin 510° + sin (−330°) cos (−390°) = 0

 


Prove that:

\[3\sin\frac{\pi}{6}\sec\frac{\pi}{3} - 4\sin\frac{5\pi}{6}\cot\frac{\pi}{4} = 1\]

 


Prove that

\[\frac{\tan (90^\circ - x) \sec(180^\circ - x) \sin( - x)}{\sin(180^\circ + x) \cot(360^\circ - x) cosec(90^\circ - x)} = 1\]

 


Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]

 

Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]


Prove that:

\[\sin\frac{10\pi}{3}\cos\frac{13\pi}{6} + \cos\frac{8\pi}{3}\sin\frac{5\pi}{6} = - 1\]

If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]

 

If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to


The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is

 

Find the general solution of the following equation:

\[\sec x = \sqrt{2}\]

Find the general solution of the following equation:

\[\sin 9x = \sin x\]

Find the general solution of the following equation:

\[\sin 2x = \cos 3x\]

Find the general solution of the following equation:

\[\tan x + \cot 2x = 0\]

Find the general solution of the following equation:

\[\tan mx + \cot nx = 0\]

Find the general solution of the following equation:

\[\sin x = \tan x\]

Solve the following equation:

\[2 \cos^2 x - 5 \cos x + 2 = 0\]

Solve the following equation:

\[4 \sin^2 x - 8 \cos x + 1 = 0\]

Solve the following equation:

\[\cos x + \cos 2x + \cos 3x = 0\]

Solve the following equation:
\[\cot x + \tan x = 2\]

 


Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]


Write the number of points of intersection of the curves

\[2y = - 1 \text{ and }y = cosec x\]

Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].


The smallest value of x satisfying the equation

\[\sqrt{3} \left( \cot x + \tan x \right) = 4\] is 

If \[\tan px - \tan qx = 0\], then the values of θ form a series in

 


If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).


In (0, π), the number of solutions of the equation ​ \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is 


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 sin2x + 1 = 3 sin x


Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ


Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`


Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×