मराठी

Prove That:Cos 570° Sin 510° + Sin (−330°) Cos (−390°) = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:cos 570° sin 510° + sin (−330°) cos (−390°) = 0

 

उत्तर

LHS =\[ \cos \left( 570^\circ \right)\sin \left( 510^\circ \right) + \sin \left( - 330^\circ \right)\cos \left( - 390^\circ \right)\]
\[ = \cos \left( 570^\circ \right) \sin \left( 510^\circ \right) + \left[ - \sin \left( 330^\circ \right) \right]\cos \left( 390^\circ \right) \left[ \because \sin\left( - x \right) = - \sin x and \cos\left( - x \right) = \cos x \right] \]
\[ = \cos \left( 570^\circ \right)\sin\left( 510^\circ \right) - \sin \left( 330^\circ\right)\]
\[ = \cos \left( 90^\circ \times 6 + 30^\circ \right) \sin \left( 90^\circ \times 5 + 60^\circ \right) - \sin \left( 90^\circ \times 3 + 60^\circ \right) \cos \left( 90^\circ \times 4 + 30^\circ \right)\]
\[ = - \cos \left( 30^\circ \right) \cos \left( 60^\circ \right) - \left[ - \cos \left( 60^\circ \right) \right] \cos \left( 30^\circ \right)\]
\[ = - \cos \left( 30^\circ \right) \cos \left( 60^\circ \right) + \cos \left( 30^\circ \right) \sin \left( 60^\circ \right)\]
\[ = 0\]
 = RHS
Hence proved .

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Trigonometric Functions - Exercise 5.3 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 5 Trigonometric Functions
Exercise 5.3 | Q 2.5 | पृष्ठ ३९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Prove that:  tan 225° cot 405° + tan 765° cot 675° = 0


Prove that:

\[\sin\frac{8\pi}{3}\cos\frac{23\pi}{6} + \cos\frac{13\pi}{3}\sin\frac{35\pi}{6} = \frac{1}{2}\]

 


Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0


Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]

 


Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]


Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]


If sec \[x = x + \frac{1}{4x}\], then sec x + tan x = 

 

If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to

 


If x = r sin θ cos ϕ, y = r sin θ sin ϕ and r cos θ, then x2 + y2 + z2 is independent of


If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to


sin6 A + cos6 A + 3 sin2 A cos2 A =


If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]

 

sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =


Find the general solution of the following equation:

\[\sin 2x = \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\sin 2x = \cos 3x\]

Find the general solution of the following equation:

\[\tan 2x \tan x = 1\]

Find the general solution of the following equation:

\[\sin 2x + \cos x = 0\]

Solve the following equation:

\[\tan^2 x + \left( 1 - \sqrt{3} \right) \tan x - \sqrt{3} = 0\]

Solve the following equation:

\[\cos x + \cos 3x - \cos 2x = 0\]

Solve the following equation:

\[\cos x + \sin x = \cos 2x + \sin 2x\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3 = 0\]

Solve the following equation:

\[\tan 3x + \tan x = 2\tan 2x\]

Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]


Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2


Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]


If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.


Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].


If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).


A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

cos 2x = 1 − 3 sin x


Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ


Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ


Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0


Solve the following equations:
2cos 2x – 7 cos x + 3 = 0


Solve the equation sin θ + sin 3θ + sin 5θ = 0


In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×