Advertisements
Advertisements
प्रश्न
उत्तर
LHS =\[ \cos \left( 570^\circ \right)\sin \left( 510^\circ \right) + \sin \left( - 330^\circ \right)\cos \left( - 390^\circ \right)\]
\[ = \cos \left( 570^\circ \right) \sin \left( 510^\circ \right) + \left[ - \sin \left( 330^\circ \right) \right]\cos \left( 390^\circ \right) \left[ \because \sin\left( - x \right) = - \sin x and \cos\left( - x \right) = \cos x \right] \]
\[ = \cos \left( 570^\circ \right)\sin\left( 510^\circ \right) - \sin \left( 330^\circ\right)\]
\[ = \cos \left( 90^\circ \times 6 + 30^\circ \right) \sin \left( 90^\circ \times 5 + 60^\circ \right) - \sin \left( 90^\circ \times 3 + 60^\circ \right) \cos \left( 90^\circ \times 4 + 30^\circ \right)\]
\[ = - \cos \left( 30^\circ \right) \cos \left( 60^\circ \right) - \left[ - \cos \left( 60^\circ \right) \right] \cos \left( 30^\circ \right)\]
\[ = - \cos \left( 30^\circ \right) \cos \left( 60^\circ \right) + \cos \left( 30^\circ \right) \sin \left( 60^\circ \right)\]
\[ = 0\]
= RHS
Hence proved .
APPEARS IN
संबंधित प्रश्न
Prove that: tan 225° cot 405° + tan 765° cot 675° = 0
Prove that:
Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0
Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]
Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]
Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]
If sec \[x = x + \frac{1}{4x}\], then sec x + tan x =
If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then x2 + y2 + z2 is independent of
If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to
sin6 A + cos6 A + 3 sin2 A cos2 A =
If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]
sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]
Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2
Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]
If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.
Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].
If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).
A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
cos 2x = 1 − 3 sin x
Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ
Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ
Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0
Solve the following equations:
2cos 2x – 7 cos x + 3 = 0
Solve the equation sin θ + sin 3θ + sin 5θ = 0
In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.