Advertisements
Advertisements
प्रश्न
Prove that:
उत्तर
LHS = \[\sin\frac{8\pi}{3}\cos\frac{23\pi}{6} + \cos\frac{13\pi}{3}\sin\frac{35\pi}{6}\]
\[ = \sin \left( \frac{8}{3} \times 180^\circ \right) \cos \left( \frac{23}{6} \times 180^\circ \right) + \cos\left( \frac{13}{3} \times 180^\circ \right)\sin\left( \frac{35}{6} \times 180^\circ \right)\]
\[ = \sin \left( 480^\circ \right) \cos \left( 690^\circ \right) + \cos \left( 780^\circ \right) \sin \left( 1050^\circ \right)\]
\[ = \sin \left( 90^\circ \times 5 + 30^\circ \right) \cos \left( 90^\circ \times 7 + 60^\circ \right) + \cos \left( 90^\circ \times 8 + 60^\circ \right)\sin \left( 90^\circ \times 11 + 60^\circ \right)\]
\[ = \cos \left( 30^\circ \right) \sin \left( 60^\circ \right) + \cos \left( 60^\circ \right)\left[ - \cos \left( 60^\circ \right) \right]\]
\[ = \frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2} + \frac{1}{2} \times \left( - \frac{1}{2} \right)\]
\[ = \frac{3}{4} - \frac{1}{4}\]
\[ = \frac{2}{4}\]
\[ = \frac{1}{2}\]
= RHS
Hence proved .
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `tan x = sqrt3`
Find the general solution of the equation sin 2x + cos x = 0
If \[\tan x = \frac{a}{b},\] show that
Prove that: tan 225° cot 405° + tan 765° cot 675° = 0
Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0
In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0
Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]
Prove that:
If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is
If tan A + cot A = 4, then tan4 A + cot4 A is equal to
If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =
If sec x + tan x = k, cos x =
Which of the following is incorrect?
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
Solve the following equation:
3tanx + cot x = 5 cosec x
Write the number of points of intersection of the curves
If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]
The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is
If \[4 \sin^2 x = 1\], then the values of x are
In (0, π), the number of solutions of the equation \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.
The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 cos2x + 1 = – 3 cos x
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ * tan 130^circ)` =
Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to
If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.