मराठी

Prove That: Sin 8 π 3 Cos 23 π 6 + Cos 13 π 3 Sin 35 π 6 = 1 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:

\[\sin\frac{8\pi}{3}\cos\frac{23\pi}{6} + \cos\frac{13\pi}{3}\sin\frac{35\pi}{6} = \frac{1}{2}\]

 

उत्तर

 LHS = \[\sin\frac{8\pi}{3}\cos\frac{23\pi}{6} + \cos\frac{13\pi}{3}\sin\frac{35\pi}{6}\]
\[ = \sin \left( \frac{8}{3} \times 180^\circ \right) \cos \left( \frac{23}{6} \times 180^\circ \right) + \cos\left( \frac{13}{3} \times 180^\circ \right)\sin\left( \frac{35}{6} \times 180^\circ \right)\]
\[ = \sin \left( 480^\circ \right) \cos \left( 690^\circ \right) + \cos \left( 780^\circ \right) \sin \left( 1050^\circ \right)\]
\[ = \sin \left( 90^\circ \times 5 + 30^\circ \right) \cos \left( 90^\circ \times 7 + 60^\circ \right) + \cos \left( 90^\circ \times 8 + 60^\circ \right)\sin \left( 90^\circ \times 11 + 60^\circ \right)\]
\[ = \cos \left( 30^\circ \right) \sin \left( 60^\circ \right) + \cos \left( 60^\circ \right)\left[ - \cos \left( 60^\circ \right) \right]\]
\[ = \frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2} + \frac{1}{2} \times \left( - \frac{1}{2} \right)\]
\[ = \frac{3}{4} - \frac{1}{4}\]
\[ = \frac{2}{4}\]
\[ = \frac{1}{2}\]
= RHS
Hence proved .

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Trigonometric Functions - Exercise 5.3 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 5 Trigonometric Functions
Exercise 5.3 | Q 2.2 | पृष्ठ ३९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the principal and general solutions of the equation `tan x = sqrt3`


Find the general solution of the equation sin 2x + cos x = 0


If \[\tan x = \frac{a}{b},\] show that

\[\frac{a \sin x - b \cos x}{a \sin x + b \cos x} = \frac{a^2 - b^2}{a^2 + b^2}\]

Prove that:  tan 225° cot 405° + tan 765° cot 675° = 0


Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0


In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0


Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]


Prove that:

\[\sin\frac{10\pi}{3}\cos\frac{13\pi}{6} + \cos\frac{8\pi}{3}\sin\frac{5\pi}{6} = - 1\]

If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to

 


If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to


If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is

 

If tan A + cot A = 4, then tan4 A + cot4 A is equal to


If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =

 

If sec x + tan x = k, cos x =


Which of the following is incorrect?


Find the general solution of the following equation:

\[cosec x = - \sqrt{2}\]

Find the general solution of the following equation:

\[\sin 9x = \sin x\]

Find the general solution of the following equation:

\[\tan 3x = \cot x\]

Find the general solution of the following equation:

\[\tan 2x \tan x = 1\]

Find the general solution of the following equation:

\[\sin 2x + \cos x = 0\]

Solve the following equation:

\[3 \cos^2 x - 2\sqrt{3} \sin x \cos x - 3 \sin^2 x = 0\]

Solve the following equation:

\[\sin x + \sin 5x = \sin 3x\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3 = 0\]

Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0 


Solve the following equation:
3tanx + cot x = 5 cosec x


Write the number of points of intersection of the curves

\[2y = - 1 \text{ and }y = cosec x\]

If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]

 


The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is 


If \[4 \sin^2 x = 1\], then the values of x are

 


In (0, π), the number of solutions of the equation ​ \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is 


If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =


The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.


The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 cos2x + 1 = – 3 cos x


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 sin2x + 1 = 3 sin x


Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ *  tan 130^circ)` =


Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to


If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×