Advertisements
Advertisements
प्रश्न
Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0
उत्तर
LHS =\[ \tan \left( - 225^\circ \right) \cot \left( - 405^\circ \right) - \tan \left( - 765^\circ \right) \cot \left( 675^\circ \right)\]
\[ = \left[ - \tan \left( 225^\circ \right) \right]\left[ - \cot \left( 405^\circ \right) \right] - \left[ - \tan \left( 765^\circ \right) \right] \cot \left( 675^\circ \right) \left[ \because \tan \left( - x \right) = \tan \left( x \right) and \cot \left( - x \right) = - \cot \left( x \right) \right]\]
\[ = \tan \left( 225^\circ \right) \cot \left( 405^\circ \right) + \tan \left( 765^\circ \right) \cot \left( 675^\circ \right)\]
\[ = \tan \left( 90^\circ \times 2 + 45^\circ \right) \cot \left( 90^\circ \times 4 + 45^\circ \right) + \tan \left( 90^\circ \times 8 + 45^\circ \right) \cot \left( 90^\circ \times 7 + 45^\circ \right)\]
\[ = \tan \left( 45^\circ \right) \cot \left( 45^\circ \right) + \tan \left( 45^\circ \right)\left[ - \tan \left( 45^\circ \right) \right]\]
\[ = 1 \times 1 + 1 \times \left( - 1 \right)\]
\[ = 1 - 1\]
\[ = 0\]
RHS
Hence, proved .
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation sec x = 2
Find the general solution for each of the following equations sec2 2x = 1– tan 2x
Find the general solution of the equation sin x + sin 3x + sin 5x = 0
If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]
Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]
Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]
Prove that
Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]
Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]
Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]
If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is
If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]
If tan θ + sec θ =ex, then cos θ equals
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2
Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]
If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.
Write the number of points of intersection of the curves
Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]
and cos 2x are in A.P.
The smallest value of x satisfying the equation
The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
sin4x = sin2x
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ
Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0
Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`
Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`
Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.
If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.
Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0