Advertisements
Advertisements
प्रश्न
Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]
and cos 2x are in A.P.
उत्तर
\[\sin2x, \frac{1}{2} and \cos2x are in AP . \]
\[ \therefore \sin2x + \cos2x = 2 \times \frac{1}{2}\]
\[ \Rightarrow \sin2x + \cos2x = 1 . . . (1)\]
This equation is of the form \[a \sin\theta + b \cos\theta = c\], where
a = 1, b = 1 and c = 1
Now,
Let: \[a = r \sin \alpha\] and \[b = r \cos \alpha\]
Thus, we have:
\[r \sin \alpha \sin2x + r \cos\alpha \cos2x = 1\]
\[\Rightarrow r \cos (2x - \alpha) = 1\]
\[ \Rightarrow \sqrt{2} \cos \left( 2x - \frac{\pi}{4} \right) = 1\]
\[ \Rightarrow \cos \left( 2x - \frac{\pi}{4} \right) = \frac{1}{\sqrt{2}}\]
\[ \Rightarrow \cos \left( 2x - \frac{\pi}{4} \right) = \cos \frac{\pi}{4}\]
\[ \Rightarrow 2x - \frac{\pi}{4} = 2n\pi \pm \frac{\pi}{4} , n \in Z\]
Taking positive value, we get:
\[ \Rightarrow 2x - \frac{\pi}{4} = 2n\pi + \frac{\pi}{4}\]
\[ \Rightarrow x = n\pi + \frac{\pi}{4}\]
Taking negative value, we get:
\[ \Rightarrow 2x - \frac{\pi}{4} = 2n\pi - \frac{\pi}{4}\]
\[ \Rightarrow 2x - \frac{\pi}{4} = 2n\pi - \frac{\pi}{4}\]
\[ \Rightarrow x = n\pi, n \in Z\]
For n = 0, the values of x are \[\frac{\pi}{4} and 0\] and for n = 1, the values of x are `(5pi)/4` and π
For the other value of n, the given condition is not true, i.e., [0, π].
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `tan x = sqrt3`
Find the general solution of the equation cos 4 x = cos 2 x
If \[\tan x = \frac{a}{b},\] show that
If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]
In a ∆ABC, prove that:
cos (A + B) + cos C = 0
In a ∆ABC, prove that:
In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0
Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]
Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]
If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to
If sec \[x = x + \frac{1}{4x}\], then sec x + tan x =
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then x2 + y2 + z2 is independent of
If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to
If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is
If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =
Which of the following is incorrect?
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\cot x + \tan x = 2\]
Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]
Solve the following equation:
3tanx + cot x = 5 cosec x
Write the set of values of a for which the equation
If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.
Write the number of points of intersection of the curves
If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).
The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]
In (0, π), the number of solutions of the equation \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 cos2x + 1 = – 3 cos x
Solve the following equations:
sin 5x − sin x = cos 3
Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ
Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)
Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.
Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`