मराठी

Write the Values of X in [0, π] for Which Sin 2 X , 1 2 and Cos 2x Are in A.P. - Mathematics

Advertisements
Advertisements

प्रश्न

Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]

 and cos 2x are in A.P.

बेरीज

उत्तर

\[\sin2x, \frac{1}{2} and \cos2x are in AP . \]
\[ \therefore \sin2x + \cos2x = 2 \times \frac{1}{2}\]
\[ \Rightarrow \sin2x + \cos2x = 1 . . . (1)\]
This equation is of the form \[a \sin\theta + b \cos\theta = c\], where
a = 1, b = 1 and c = 1
Now,
Let: \[a = r \sin \alpha\] and \[b = r \cos \alpha\]
Thus, we have:

\[r = \sqrt{a^2 + b^2} = \sqrt{1^2 + 1^2} = \sqrt{2}\] and `tanalpha =1=>alpha=pi/4`
On putting \[a = 1 = r \sin \alpha\] and \[b = 1 = r \cos \alpha\] in equation (1), we get:
\[r \sin \alpha \sin2x + r \cos\alpha \cos2x = 1\]

\[\Rightarrow r \cos (2x - \alpha) = 1\]

\[ \Rightarrow \sqrt{2} \cos \left( 2x - \frac{\pi}{4} \right) = 1\]

\[ \Rightarrow \cos \left( 2x - \frac{\pi}{4} \right) = \frac{1}{\sqrt{2}}\]

\[ \Rightarrow \cos \left( 2x - \frac{\pi}{4} \right) = \cos \frac{\pi}{4}\]

\[ \Rightarrow 2x - \frac{\pi}{4} = 2n\pi \pm \frac{\pi}{4} , n \in Z\]

Taking positive value, we get:

\[ \Rightarrow 2x - \frac{\pi}{4} = 2n\pi + \frac{\pi}{4}\]

\[ \Rightarrow x = n\pi + \frac{\pi}{4}\]

Taking negative value, we get: 

\[ \Rightarrow 2x - \frac{\pi}{4} = 2n\pi - \frac{\pi}{4}\]

\[ \Rightarrow 2x - \frac{\pi}{4} = 2n\pi - \frac{\pi}{4}\]

\[ \Rightarrow x = n\pi, n \in Z\]
For n = 0, the values of x are \[\frac{\pi}{4} and 0\]  and for n = 1, the values of x are `(5pi)/4` and π

\[\frac{5\pi}{4} \text{ does not satisfy the condition.}\]

For the other value of n, the given condition is not true, i.e., [0, π].

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric equations - Exercise 11.2 [पृष्ठ २६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 11 Trigonometric equations
Exercise 11.2 | Q 7 | पृष्ठ २६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the principal and general solutions of the equation `tan x = sqrt3`


Find the general solution of the equation cos 4 x = cos 2 x


If \[\tan x = \frac{a}{b},\] show that

\[\frac{a \sin x - b \cos x}{a \sin x + b \cos x} = \frac{a^2 - b^2}{a^2 + b^2}\]

If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]


In a ∆ABC, prove that:
cos (A + B) + cos C = 0


In a ∆ABC, prove that:

\[\tan\frac{A + B}{2} = \cot\frac{C}{2}\]

In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0


Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]


Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]


If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to


If sec \[x = x + \frac{1}{4x}\], then sec x + tan x = 

 

If x = r sin θ cos ϕ, y = r sin θ sin ϕ and r cos θ, then x2 + y2 + z2 is independent of


If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to


If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is


If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =

 

Which of the following is incorrect?


Find the general solution of the following equation:

\[\cos x = - \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\sin 3x + \cos 2x = 0\]

Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]


Solve the following equation:

\[2 \cos^2 x - 5 \cos x + 2 = 0\]

Solve the following equation:

\[\cos 4 x = \cos 2 x\]

Solve the following equation:

\[\cos x + \sin x = \cos 2x + \sin 2x\]

Solve the following equation:
\[\cot x + \tan x = 2\]

 


Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]


Solve the following equation:
3tanx + cot x = 5 cosec x


Write the set of values of a for which the equation

\[\sqrt{3} \sin x - \cos x = a\] has no solution.

If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.

 

Write the number of points of intersection of the curves

\[2y = 1\] and \[y = \cos x, 0 \leq x \leq 2\pi\].
 

If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).


The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]


In (0, π), the number of solutions of the equation ​ \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is 


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 cos2x + 1 = – 3 cos x


Solve the following equations:
sin 5x − sin x = cos 3


Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ


Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)


Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.


Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×