मराठी

If C O S E C X − Sin X = a 3 , Sec X − Cos X = B 3 , Then Prove that a 2 B 2 ( a 2 + B 2 ) = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]

उत्तर

\[cosec x - \sin x = a^3 \]
\[ \therefore \frac{1}{\sin x} - \sin = a^3 \]
\[ \Rightarrow \frac{1 - \sin^2 x}{\sin x} = a^3 \]
\[ \Rightarrow \frac{\cos^2 x}{\sin x} = a^3 \]
\[ \Rightarrow a = \left( \frac{\cos^2 x}{\sin x} \right)^\frac{1}{3} . . . . (i)\]
\[\text{ Also, }\sec x - \cos x = b^3 \]
\[ \Rightarrow \frac{1}{\cos x} - \cos = b^3 \]
\[ \Rightarrow \frac{1 - \cos^2 x}{\cos x} = b^3 \]
\[ \Rightarrow \frac{\sin^2 x}{\cos x} = b^3 \]
\[ \Rightarrow b = \left( \frac{\sin^2 x}{\cos x} \right)^\frac{1}{3} . . . . . (ii)\]
\[\text{ Now, LHS }= a^2 b^2 \left( a^2 + b^2 \right) = \left( ab \right)^2 \left( a^2 + b^2 \right)\]
\[ = \left[ \left( \frac{\cos^2 x}{\sin x} \right)^\frac{1}{3} \left( \frac{\sin^2 x}{\cos x} \right)^\frac{1}{3} \right]^2 \left[ \left( \left( \frac{\cos^2 x}{\sin x} \right)^\frac{1}{3} \right)^2 + \left( \left( \frac{\sin^2 x}{\cos x} \right)^\frac{1}{3} \right)^2 \right]\]
\[ = \left( \sin x \cos x \right)^\frac{2}{3} \left[ \frac{\left( \cos^2 x \right)^\frac{2}{3}}{\left( \sin x \right)^\frac{2}{3}} + \frac{\left( \sin^2 x \right)^\frac{2}{3}}{\left( \cos x \right)^\frac{2}{3}} \right]\]
\[ = \left( \sin x \cos x \right)^\frac{2}{3} \left[ \frac{\left( \cos^3 x \right)^\frac{2}{3} + \left( \sin^3 x \right)^\frac{2}{3}}{\left( \sin x \right)^\frac{2}{3} \left( \cos x \right)^\frac{2}{3}} \right]\]
\[ = \left( \sin x \cos x \right)^\frac{2}{3} \left[ \frac{\cos^2 x + \sin^2 x}{\left( \sin x \cos x \right)^\frac{2}{3}} \right]\]
 = 1 = RHS

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Trigonometric Functions - Exercise 5.1 [पृष्ठ १९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 5 Trigonometric Functions
Exercise 5.1 | Q 21 | पृष्ठ १९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the principal and general solutions of the equation  `cot x = -sqrt3`


If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].


If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]

 


Prove that

\[\frac{cosec(90^\circ + x) + \cot(450^\circ + x)}{cosec(90^\circ - x) + \tan(180^\circ - x)} + \frac{\tan(180^\circ + x) + \sec(180^\circ - x)}{\tan(360^\circ + x) - \sec( - x)} = 2\]

 


Prove that

\[\left\{ 1 + \cot x - \sec\left( \frac{\pi}{2} + x \right) \right\}\left\{ 1 + \cot x + \sec\left( \frac{\pi}{2} + x \right) \right\} = 2\cot x\]

 


Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]


\[\sqrt{\frac{1 + \cos x}{1 - \cos x}}\] is equal to

 


If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is

 

\[\sec^2 x = \frac{4xy}{(x + y )^2}\] is true if and only if

 


If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =

 

Which of the following is incorrect?


Which of the following is correct?


Find the general solution of the following equation:

\[\sin x = \frac{1}{2}\]

Find the general solution of the following equation:

\[\tan x = - \frac{1}{\sqrt{3}}\]

Find the general solution of the following equation:

\[\sin 2x + \cos x = 0\]

Solve the following equation:

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\]

Solve the following equation:

\[3 \cos^2 x - 2\sqrt{3} \sin x \cos x - 3 \sin^2 x = 0\]

Solve the following equation:

\[\cos x \cos 2x \cos 3x = \frac{1}{4}\]

Solve the following equation:

`cosec  x = 1 + cot x`


Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]


Solve the following equation:
3tanx + cot x = 5 cosec x


Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]


Write the set of values of a for which the equation

\[\sqrt{3} \sin x - \cos x = a\] has no solution.

Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].


If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.


If \[\tan px - \tan qx = 0\], then the values of θ form a series in

 


If \[4 \sin^2 x = 1\], then the values of x are

 


In (0, π), the number of solutions of the equation ​ \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is 


The number of values of ​x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]


If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =


Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`


Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`


Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

sin4x = sin2x


Solve the following equations:
sin 5x − sin x = cos 3


Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.


Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×