Advertisements
Advertisements
प्रश्न
If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]
उत्तर
\[cosec x - \sin x = a^3 \]
\[ \therefore \frac{1}{\sin x} - \sin = a^3 \]
\[ \Rightarrow \frac{1 - \sin^2 x}{\sin x} = a^3 \]
\[ \Rightarrow \frac{\cos^2 x}{\sin x} = a^3 \]
\[ \Rightarrow a = \left( \frac{\cos^2 x}{\sin x} \right)^\frac{1}{3} . . . . (i)\]
\[\text{ Also, }\sec x - \cos x = b^3 \]
\[ \Rightarrow \frac{1}{\cos x} - \cos = b^3 \]
\[ \Rightarrow \frac{1 - \cos^2 x}{\cos x} = b^3 \]
\[ \Rightarrow \frac{\sin^2 x}{\cos x} = b^3 \]
\[ \Rightarrow b = \left( \frac{\sin^2 x}{\cos x} \right)^\frac{1}{3} . . . . . (ii)\]
\[\text{ Now, LHS }= a^2 b^2 \left( a^2 + b^2 \right) = \left( ab \right)^2 \left( a^2 + b^2 \right)\]
\[ = \left[ \left( \frac{\cos^2 x}{\sin x} \right)^\frac{1}{3} \left( \frac{\sin^2 x}{\cos x} \right)^\frac{1}{3} \right]^2 \left[ \left( \left( \frac{\cos^2 x}{\sin x} \right)^\frac{1}{3} \right)^2 + \left( \left( \frac{\sin^2 x}{\cos x} \right)^\frac{1}{3} \right)^2 \right]\]
\[ = \left( \sin x \cos x \right)^\frac{2}{3} \left[ \frac{\left( \cos^2 x \right)^\frac{2}{3}}{\left( \sin x \right)^\frac{2}{3}} + \frac{\left( \sin^2 x \right)^\frac{2}{3}}{\left( \cos x \right)^\frac{2}{3}} \right]\]
\[ = \left( \sin x \cos x \right)^\frac{2}{3} \left[ \frac{\left( \cos^3 x \right)^\frac{2}{3} + \left( \sin^3 x \right)^\frac{2}{3}}{\left( \sin x \right)^\frac{2}{3} \left( \cos x \right)^\frac{2}{3}} \right]\]
\[ = \left( \sin x \cos x \right)^\frac{2}{3} \left[ \frac{\cos^2 x + \sin^2 x}{\left( \sin x \cos x \right)^\frac{2}{3}} \right]\]
= 1 = RHS
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `cot x = -sqrt3`
If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].
If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]
Prove that
Prove that
Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]
If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is
If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =
Which of the following is incorrect?
Which of the following is correct?
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
`cosec x = 1 + cot x`
Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]
Solve the following equation:
3tanx + cot x = 5 cosec x
Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]
Write the set of values of a for which the equation
Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].
If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.
If \[\tan px - \tan qx = 0\], then the values of θ form a series in
If \[4 \sin^2 x = 1\], then the values of x are
In (0, π), the number of solutions of the equation \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is
The number of values of x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`
Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`
Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
sin4x = sin2x
Solve the following equations:
sin 5x − sin x = cos 3
Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.
Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`