मराठी

Solve the following equation: cosec x=1+cotx - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following equation:

`cosec  x = 1 + cot x`

बेरीज

उत्तर

Given,

`cosec  x = 1 + cot x`

⇒ `1/sin x = 1 + cos x/sin x`

⇒ sin x + cos x = 1

In all such problems we try to reduce the equation in an equation involving single trigonometric expression.

∴ `s 1/sqrt2 sin x + 1/sqrt2 cos x = 1/sqrt2` {dividing by √2 both sides}

⇒ `sin x sin pi/4 + cos pi/4 cos x = cos pi/4.` {cos A cos B + sin A sin B = cos(A − B)}

NOTE: The ratio of sin can also be used in place of cos; the answer stays the same, but the form may change. If you enter numbers for n, you will receive the same values in both forms.

If cos x = cos y, impls x = 2nπ ± y, where n ∈ Z

∴ `x - pi/4 = (2npi ± pi/4).`

∴ `x = (2npi ± pi/4) + pi/4` where n n ∈ Z

`x = 2npi or x = 2npi + pi/2` where n n ∈ Z

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric equations - Exercise 11.1 [पृष्ठ २२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 11 Trigonometric equations
Exercise 11.1 | Q 6.4 | पृष्ठ २२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]


If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]


If \[T_n = \sin^n x + \cos^n x\], prove that  \[2 T_6 - 3 T_4 + 1 = 0\]


Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]

 


Prove that

\[\left\{ 1 + \cot x - \sec\left( \frac{\pi}{2} + x \right) \right\}\left\{ 1 + \cot x + \sec\left( \frac{\pi}{2} + x \right) \right\} = 2\cot x\]

 


Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]


\[\sqrt{\frac{1 + \cos x}{1 - \cos x}}\] is equal to

 


If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is


The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is


sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =


If tan A + cot A = 4, then tan4 A + cot4 A is equal to


If sec x + tan x = k, cos x =


Which of the following is incorrect?


The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is

 

Find the general solution of the following equation:

\[\sin 9x = \sin x\]

Find the general solution of the following equation:

\[\tan 3x = \cot x\]

Find the general solution of the following equation:

\[\tan mx + \cot nx = 0\]

Find the general solution of the following equation:

\[\tan px = \cot qx\]

 


Solve the following equation:

\[2 \cos^2 x - 5 \cos x + 2 = 0\]

Solve the following equation:

\[\cos x + \cos 2x + \cos 3x = 0\]

Solve the following equation:

\[\cos x + \cos 3x - \cos 2x = 0\]

Solve the following equation:

\[\cos x + \sin x = \cos 2x + \sin 2x\]

Solve the following equation:

\[\tan x + \tan 2x + \tan 3x = 0\]

Solve the following equation:

\[\tan x + \tan 2x = \tan 3x\]

Solve the following equation:

\[\tan 3x + \tan x = 2\tan 2x\]

Solve the following equation:
\[\cot x + \tan x = 2\]

 


Solve the following equation:
 sin x tan x – 1 = tan x – sin x

 


Solve the following equation:
3tanx + cot x = 5 cosec x


If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.


Write the solution set of the equation 

\[\left( 2 \cos x + 1 \right) \left( 4 \cos x + 5 \right) = 0\] in the interval [0, 2π].

Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].


The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]


The smallest positive angle which satisfies the equation ​

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\] is

A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is

 

Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1


Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval


If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.


If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2 


Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×