Advertisements
Advertisements
प्रश्न
Solve the following equation:
`cosec x = 1 + cot x`
उत्तर
Given,
`cosec x = 1 + cot x`
⇒ `1/sin x = 1 + cos x/sin x`
⇒ sin x + cos x = 1
In all such problems we try to reduce the equation in an equation involving single trigonometric expression.
∴ `s 1/sqrt2 sin x + 1/sqrt2 cos x = 1/sqrt2` {dividing by √2 both sides}
⇒ `sin x sin pi/4 + cos pi/4 cos x = cos pi/4.` {cos A cos B + sin A sin B = cos(A − B)}
NOTE: The ratio of sin can also be used in place of cos; the answer stays the same, but the form may change. If you enter numbers for n, you will receive the same values in both forms.
If cos x = cos y, impls x = 2nπ ± y, where n ∈ Z
∴ `x - pi/4 = (2npi ± pi/4).`
∴ `x = (2npi ± pi/4) + pi/4` where n n ∈ Z
`x = 2npi or x = 2npi + pi/2` where n n ∈ Z
APPEARS IN
संबंधित प्रश्न
If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]
If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[2 T_6 - 3 T_4 + 1 = 0\]
Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]
Prove that
Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is
The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is
sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =
If tan A + cot A = 4, then tan4 A + cot4 A is equal to
If sec x + tan x = k, cos x =
Which of the following is incorrect?
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\cot x + \tan x = 2\]
Solve the following equation:
sin x tan x – 1 = tan x – sin x
Solve the following equation:
3tanx + cot x = 5 cosec x
If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.
Write the solution set of the equation
Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].
The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]
The smallest positive angle which satisfies the equation
A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is
Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1
Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval
If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.
If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2
Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0