Advertisements
Advertisements
प्रश्न
Solve the following equation:
3tanx + cot x = 5 cosec x
उत्तर
\[3 \tan x + \cot x = 5 cosec x\]
\[ \Rightarrow \frac{3 \sin x}{\cos x} + \frac{\cos x}{\sin x} = \frac{5}{\sin x}\]
\[ \Rightarrow \frac{3 \sin^2 x + \cos^2 x}{\cos x \sin x} = \frac{5}{\sin x}\]
\[ \Rightarrow 3\left( 1 - \cos^2 x \right) + \cos^2 x = 5 \cos x\]
\[ \Rightarrow 3 - 3 \cos^2 x + \cos^2 x = 5 \cos x\]
\[ \Rightarrow 2 \cos^2 x + 5 \cos x - 3 = 0\]
\[ \Rightarrow 2 \cos^2 x + 6 \cos x - \cos x - 3 = 0\]
\[ \Rightarrow 2 \cos x\left( \cos x + 3 \right) - 1\left( \cos x + 3 \right) = 0\]
\[ \Rightarrow \left( 2 \cos x - 1 \right)\left( \cos x + 3 \right) = 0\]
\[ \Rightarrow \left( 2 \cos x - 1 \right) = 0\text{ or }\left( \cos x + 3 \right) = 0\]
\[ \Rightarrow \cos x = \frac{1}{2}\text{ or }\cos x = - 3\]
\[\cos x = - 3\text{ is not possible }\left( \because - 1 \leq \cos x \leq 1 \right)\]
\[ \Rightarrow \cos x = \cos\frac{\pi}{3}\]
\[ \Rightarrow x = 2n\pi \pm \frac{\pi}{3}, n \in \mathbb{Z}\]
APPEARS IN
संबंधित प्रश्न
Find the general solution of the equation cos 4 x = cos 2 x
If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]
Prove that:
Prove that
Prove that
In a ∆ABC, prove that:
cos (A + B) + cos C = 0
In a ∆ABC, prove that:
Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]
Prove that:
If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to
If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to
If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =
The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]
Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]
Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]
If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.
Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].
Write the solution set of the equation
If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]
The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is
A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is
In (0, π), the number of solutions of the equation \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is
The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
sin4x = sin2x
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 cos2x + 1 = – 3 cos x
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
The minimum value of 3cosx + 4sinx + 8 is ______.
Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.