Advertisements
Advertisements
प्रश्न
Find the general solution of the equation cos 4 x = cos 2 x
उत्तर
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation sec x = 2
Find the general solution of cosec x = –2
Find the general solution of the equation sin x + sin 3x + sin 5x = 0
If \[\tan x = \frac{a}{b},\] show that
If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]
Prove that:
Prove that
Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]
Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]
In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0
Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
`cosec x = 1 + cot x`
Solve the following equation:
\[\cot x + \tan x = 2\]
Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]
Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0
Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]
Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]
and cos 2x are in A.P.
If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).
A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval
The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]
In (0, π), the number of solutions of the equation \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is
The number of values of x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]
The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval
Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`
Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`
Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1
Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`
Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ * tan 130^circ)` =
Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to
Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to
Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`
Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.