Advertisements
Advertisements
प्रश्न
Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]
उत्तर
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]
\[ \Rightarrow 2^{\sin^2 x} + 2^{1 - \sin^2 x} = 2\sqrt{2}\]
\[ \Rightarrow 2^{\sin^2 x} + \frac{2}{2^{\sin^2 x}} = 2\sqrt{2}\]
\[\text{ Let }2^{\sin^2 x} = y\]
\[ \Rightarrow y + \frac{2}{y} = 2\sqrt{2}\]
\[ \Rightarrow y^2 + 2 = 2\sqrt{2}y\]
\[ \Rightarrow y^2 - 2\sqrt{2}y + 2 = 0\]
\[ \Rightarrow y^2 - \sqrt{2}y - \sqrt{2}y + 2 = 0\]
\[ \Rightarrow y\left( y - \sqrt{2} \right) - \sqrt{2}\left( y - \sqrt{2} \right) = 0\]
\[ \Rightarrow \left( y - \sqrt{2} \right)^2 = 0\]
\[ \Rightarrow \left( y - \sqrt{2} \right) = 0\]
\[ \Rightarrow y = \sqrt{2}\]
\[ \Rightarrow 2^{\sin^2 x} = 2^\frac{1}{2} \]
\[ \Rightarrow \sin^2 x = \frac{1}{2}\]
\[ \Rightarrow \sin^2 x = \sin^2 \frac{\pi}{4}\]
\[ \Rightarrow x = n\pi \pm \frac{\pi}{4}, n \in \mathbb{Z}\]
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `tan x = sqrt3`
If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].
If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that \[ab + a - b + 1 = 0\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]
Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]
Prove that
Prove that
In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0
If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to
If tan θ + sec θ =ex, then cos θ equals
Which of the following is incorrect?
The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
sin x tan x – 1 = tan x – sin x
Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0
Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2
Write the general solutions of tan2 2x = 1.
If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.
Write the number of points of intersection of the curves
If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.
The smallest value of x satisfying the equation
If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).
The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]
In (0, π), the number of solutions of the equation \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is
The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
cos 2x = 1 − 3 sin x
Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0
Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to
Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to