Advertisements
Advertisements
प्रश्न
Find the general solution of the following equation:
उत्तर
We have:
⇒ \[\sec x = \frac{2}{\sqrt{3}}\] (or)
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation sec x = 2
Find the general solution of cosec x = –2
Find the general solution of the equation cos 4 x = cos 2 x
Find the general solution for each of the following equations sec2 2x = 1– tan 2x
If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].
Prove that: tan 225° cot 405° + tan 765° cot 675° = 0
Prove that
Prove that
Prove that
Prove that:
If sec \[x = x + \frac{1}{4x}\], then sec x + tan x =
If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to
If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]
Solve the following equation:
\[\cot x + \tan x = 2\]
Write the general solutions of tan2 2x = 1.
If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.
Write the number of points of intersection of the curves
If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.
If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
sin4x = sin2x
Solve the following equations:
sin θ + cos θ = `sqrt(2)`
Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to
The minimum value of 3cosx + 4sinx + 8 is ______.