मराठी

Solve the Following Equation: Sin X + Cos X = √ 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]

बेरीज

उत्तर

Given:
\[\sin x + \cos x = \sqrt{2}\] ...(i)
The equation is of the form
\[a \sin x + b \cos x = c\], where 

\[a = 1, b = 1\] and
c = `sqrt2`
Let:
\[a = r \sin \alpha\] and
\[a = r \sin \alpha\]
Now,
\[r = \sqrt{a^2 + b^2} = \sqrt{1^2 + 1^2} = \sqrt{2}\] and
\[r = \sqrt{a^2 + b^2} = \sqrt{1^2 + 1^2} = \sqrt{2}\]

On putting

\[a = 1 = r \sin \alpha\] and
b =1 = r cos α in equation (i), we get:
\[r \sin \alpha \sin x + r \cos \alpha \cos x = \sqrt{2}\]

\[\Rightarrow r \cos (x - \alpha) = \sqrt{2}\]

\[ \Rightarrow \sqrt{2} \cos \left( x - \frac{\pi}{4} \right) = \sqrt{2}\]

\[ \Rightarrow \cos \left( x - \frac{\pi}{4} \right) = 1\]

\[ \Rightarrow \cos \left( x - \frac{\pi}{4} \right) = \cos 0\]

\[ \Rightarrow x - \frac{\pi}{4} = n\pi \pm 0, n \in Z\]

\[ \Rightarrow x = n\pi + \frac{\pi}{4}, n \in Z\]

\[ \Rightarrow x = (8n + 1)\frac{\pi}{4}, n \in Z\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric equations - Exercise 11.1 [पृष्ठ २२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 11 Trigonometric equations
Exercise 11.1 | Q 6.1 | पृष्ठ २२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the principal and general solutions of the equation sec x = 2


Find the general solution of the equation  sin x + sin 3x + sin 5x = 0


If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x


If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that  \[ab + a - b + 1 = 0\]


Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]


In a ∆ABC, prove that:
cos (A + B) + cos C = 0


Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]


Prove that:

\[\sin\frac{10\pi}{3}\cos\frac{13\pi}{6} + \cos\frac{8\pi}{3}\sin\frac{5\pi}{6} = - 1\]

If sec \[x = x + \frac{1}{4x}\], then sec x + tan x = 

 

\[\sqrt{\frac{1 + \cos x}{1 - \cos x}}\] is equal to

 


If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]

 

If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =

 

If tan θ + sec θ =ex, then cos θ equals


If sec x + tan x = k, cos x =


Find the general solution of the following equation:

\[\sin 2x = \cos 3x\]

Solve the following equation:

\[\cos 4 x = \cos 2 x\]

Solve the following equation:

\[\cos x + \cos 2x + \cos 3x = 0\]

Solve the following equation:

\[\tan x + \tan 2x = \tan 3x\]

Solve the following equation:

\[\tan 3x + \tan x = 2\tan 2x\]

Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]


Solve the following equation:
 sin x tan x – 1 = tan x – sin x

 


Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]


Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]


Write the general solutions of tan2 2x = 1.

 

Write the set of values of a for which the equation

\[\sqrt{3} \sin x - \cos x = a\] has no solution.

Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]

 and cos 2x are in A.P.


Write the number of points of intersection of the curves

\[2y = - 1 \text{ and }y = cosec x\]

Write the solution set of the equation 

\[\left( 2 \cos x + 1 \right) \left( 4 \cos x + 5 \right) = 0\] in the interval [0, 2π].

If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.


If \[\tan px - \tan qx = 0\], then the values of θ form a series in

 


The smallest positive angle which satisfies the equation ​

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\] is

If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =


The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval


Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 sin2x + 1 = 3 sin x


Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ *  tan 130^circ)` =


The minimum value of 3cosx + 4sinx + 8 is ______.


In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×