Advertisements
Advertisements
प्रश्न
In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.
उत्तर
In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is `underline(x^2 - (2/(sin 2A)) x + 1` = 0.
Explanation:
Given a ΔABC with ∠C = 90°
So, the equation whose roots are tanA and tanB is
x2 – (tanA + tanB)x + tanA.tanB = 0
A + B = 90° ......[∵ ∠C = 90°]
⇒ tan(A + B) = tan90°
⇒ `(tanA + tanB)/(1 - tanA tanB) = 1/0`
⇒ 1 – tanA tanB = 0
⇒ tan A tan B = 1 .......(i)
Now tanA + tanB = `sinA/cosA + sinB/cosB`
= `(sinA cosB + cosA sinB)/(cosA cosB)`
= `(sin(A + B))/(cosA cosB)`
= `(sin 90^circ)/(cosA. cos(90^circ - A))`
= `1/(cosA sinA)`
∴ tanA + tanB = `2/(2sinA cosA)`
= `2/(sin 2A)` ......(ii)
From (i) and (ii) we get
`x^2 - (2/(sin 2A)) x + 1` = 0
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `tan x = sqrt3`
Find the general solution of cosec x = –2
Find the general solution of the equation cos 4 x = cos 2 x
If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that
If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].
If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]
Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]
Prove that
In a ∆ABC, prove that:
Prove that:
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is
sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =
If tan θ + sec θ =ex, then cos θ equals
If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
cosx + sin x = cos 2x + sin 2x
Solve the following equation:
3tanx + cot x = 5 cosec x
Write the solution set of the equation
The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is
Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ
Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval
If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.