मराठी

In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.

रिकाम्या जागा भरा

उत्तर

In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is `underline(x^2 - (2/(sin 2A)) x + 1` = 0.

Explanation:

Given a ΔABC with ∠C = 90°

So, the equation whose roots are tanA and tanB is

x2 – (tanA + tanB)x + tanA.tanB = 0

A + B = 90°   ......[∵ ∠C = 90°]

⇒ tan(A + B) = tan90°

⇒ `(tanA + tanB)/(1 - tanA tanB) = 1/0`

⇒ 1 – tanA tanB = 0

⇒ tan A tan B = 1   .......(i)

Now tanA + tanB = `sinA/cosA + sinB/cosB`

= `(sinA cosB + cosA sinB)/(cosA cosB)`

= `(sin(A + B))/(cosA cosB)`

= `(sin 90^circ)/(cosA. cos(90^circ - A))`

= `1/(cosA sinA)`

∴ tanA + tanB = `2/(2sinA cosA)`

= `2/(sin 2A)`   ......(ii)

From (i) and (ii) we get

`x^2 - (2/(sin 2A)) x + 1` = 0

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Trigonometric Functions - Exercise [पृष्ठ ५९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 3 Trigonometric Functions
Exercise | Q 64 | पृष्ठ ५९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the principal and general solutions of the equation `tan x = sqrt3`


Find the general solution of cosec x = –2


Find the general solution of the equation cos 4 x = cos 2 x


If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that

\[\frac{1 - \cos x + \sin x}{1 + \sin x}\] is also equal to a.

If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].


If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]


Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]


Prove that

\[\left\{ 1 + \cot x - \sec\left( \frac{\pi}{2} + x \right) \right\}\left\{ 1 + \cot x + \sec\left( \frac{\pi}{2} + x \right) \right\} = 2\cot x\]

 


In a ∆ABC, prove that:

\[\cos\left( \frac{A + B}{2} \right) = \sin\frac{C}{2}\]

 


Prove that:

\[\sin\frac{10\pi}{3}\cos\frac{13\pi}{6} + \cos\frac{8\pi}{3}\sin\frac{5\pi}{6} = - 1\]

If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to


If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is

 

sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =


If tan θ + sec θ =ex, then cos θ equals


If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then


Find the general solution of the following equation:

\[cosec x = - \sqrt{2}\]

Find the general solution of the following equation:

\[\sin 2x + \cos x = 0\]

Solve the following equation:

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\]

Solve the following equation:

\[\cos x + \cos 2x + \cos 3x = 0\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3 = 0\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3x + \sin 4x = 0\]

Solve the following equation:

\[\sin 2x - \sin 4x + \sin 6x = 0\]

Solve the following equation:

\[\tan 3x + \tan x = 2\tan 2x\]

Solve the following equation:
 cosx + sin x = cos 2x + sin 2x

 


Solve the following equation:
3tanx + cot x = 5 cosec x


Write the solution set of the equation 

\[\left( 2 \cos x + 1 \right) \left( 4 \cos x + 5 \right) = 0\] in the interval [0, 2π].

The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is 


Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ


Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval


If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×