Advertisements
Advertisements
प्रश्न
If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].
उत्तर
\[\tan x = \frac{b}{a}\]
\[\text{ Now }, \sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\]
\[ = \sqrt{\frac{1 + \frac{b}{a}}{1 - \frac{b}{a}}} + \sqrt{\frac{1 - \frac{b}{a}}{1 + \frac{b}{a}}}\]
\[ = \sqrt{\frac{1 + \tan x}{1 - \tan x}} + \sqrt{\frac{1 - \tan x}{1 + \tan x}}\]
\[ = \frac{\tan x + 1 + 1 - \tan x}{\sqrt{1 - \tan^2 x}}\]
\[ = \frac{2}{\sqrt{1 - \tan^2 x}}\]
\[ = \frac{2\cos x}{\sqrt{\cos^2 x - \sin^2 x}}\]
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation sec x = 2
Find the general solution of cosec x = –2
Find the general solution for each of the following equations sec2 2x = 1– tan 2x
If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]
Prove that
Prove that
In a ∆ABC, prove that:
Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]
Prove that:
Prove that:
If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to
If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is
The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
sin x tan x – 1 = tan x – sin x
Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0
If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.
The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ
Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.
Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0
Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x