Advertisements
Advertisements
प्रश्न
Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]
उत्तर
\[ \frac{13\pi}{3} = 780^\circ, \frac{2\pi}{3} = 120^\circ, \frac{4\pi}{3} = 240^\circ, \frac{13\pi}{6} = 390^\circ\]
LHS = \[\sin\left( 780^\circ \right) \sin\left( 120^\circ \right) + \cos\left( 240^\circ \right) \sin\left( 390^\circ \right)\]
\[ = \sin\left( 90^\circ \times 8 + 60^\circ \right) \sin\left( 90^\circ \times 1 + 30^\circ \right) + \cos\left( 90^\circ \times 2 + 60^\circ \right) \sin\left( 90^\circ \times 4 + 30^\circ \right)\]
\[ = \sin 60^\circ \cos 30^\circ + \left[ - \cos 60^\circ \right] \sin 30^\circ\]
\[ = \sin 60^\circ \cos 30^\circ - \cos 60^\circ\sin 30^\circ\]
\[ = \frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2} - \frac{1}{2} \times \frac{1}{2}\]
\[ = \frac{3}{4} - \frac{1}{4}\]
\[ = \frac{1}{2}\]
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `tan x = sqrt3`
Find the general solution of the equation sin x + sin 3x + sin 5x = 0
If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that
If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].
Prove that:
Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]
Prove that
Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]
In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0
Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]
Prove that:
If sec \[x = x + \frac{1}{4x}\], then sec x + tan x =
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then x2 + y2 + z2 is independent of
sin6 A + cos6 A + 3 sin2 A cos2 A =
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is
If tan θ + sec θ =ex, then cos θ equals
Which of the following is correct?
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
The smallest value of x satisfying the equation
If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]
A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is
Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
Solve the following equations:
sin θ + cos θ = `sqrt(2)`
Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1
Solve the following equations:
cot θ + cosec θ = `sqrt(3)`
Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`
Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ * tan 130^circ)` =
Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to
Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x