मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

Solve the following equations:cot θ + cosec θ = 3 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following equations:
cot θ + cosec θ = `sqrt(3)`

बेरीज

उत्तर

cot θ + cosec θ = `sqrt(3)`

`cos theta/sin theta + 1/sin theta = sqrt(3)`, sin θ ≠ 0

`(cos theta + 1)/sin theta = sqrt(3)`, sin θ ≠ 0

1 + cos θ = `sqrt(3) sin theta`

`sqrt(3)sin theta - cos theta` = 1

Divide each term by 2

`sqrt(3)/2 sin theta - 1/2 cos theta = 1/2`

`sin  pi/3 * sin theta - cos  pi/3 * cos theta = 1/2`

`- (cos theta cos  pi/3 - sin theta sin  pi/3) = 1/2`

`cos (theta + pi/3) = - 1/2`

`cos (theta + pi/3) = cos (theta - pi/3)`

`cos (theta + pi/3) = cos ((3pi - pi)/3)`

`cos (theta + pi/3) = cos ((2pi)/3)`

The general solution is

`theta + pi/3 = 2"n"pi + (2pi)/3`, n ∈ Z

θ = `2"n"pi - pi/3 + (2pi)/3`, n ∈ Z

θ = `2"n"pi - pi/3 - (2pi)/3` or θ = `2"n"pi - pi/3 + (2pi)/3` 

θ = `2"n"pi - (3pi)/3` or θ = `2"n"pi + (2pi - pi)/3`

θ = `2"n"pi - pi` or θ = `2"n"pi + pi/3`, n ∈ Z

θ = `(2"n" - 1)pi` or θ = `2"n"pi + pi/3`, n ∈ Z

Since sin θ ≠ 0, θ = (2n – 1)π is not possible

∴ θ = `2"n"pi + pi/3`, n ∈ Z

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Trigonometry - Exercise 3.8 [पृष्ठ १३३]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 3 Trigonometry
Exercise 3.8 | Q 3. (viii) | पृष्ठ १३३

संबंधित प्रश्‍न

Find the general solution of the equation cos 3x + cos x – cos 2x = 0


Prove that:cos 570° sin 510° + sin (−330°) cos (−390°) = 0

 


Prove that

\[\left\{ 1 + \cot x - \sec\left( \frac{\pi}{2} + x \right) \right\}\left\{ 1 + \cot x + \sec\left( \frac{\pi}{2} + x \right) \right\} = 2\cot x\]

 


If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to


If tan θ + sec θ =ex, then cos θ equals


If sec x + tan x = k, cos x =


The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is

 

The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is

 

Find the general solution of the following equation:

\[\sin 9x = \sin x\]

Find the general solution of the following equation:

\[\tan x + \cot 2x = 0\]

Find the general solution of the following equation:

\[\sin 2x + \cos x = 0\]

Solve the following equation:

\[2 \cos^2 x - 5 \cos x + 2 = 0\]

Solve the following equation:

\[\sqrt{3} \cos x + \sin x = 1\]


Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]


Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]


Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ


Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`


Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ *  tan 130^circ)` =


Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)


In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×