Advertisements
Advertisements
प्रश्न
Solve the following equations:
cot θ + cosec θ = `sqrt(3)`
उत्तर
cot θ + cosec θ = `sqrt(3)`
`cos theta/sin theta + 1/sin theta = sqrt(3)`, sin θ ≠ 0
`(cos theta + 1)/sin theta = sqrt(3)`, sin θ ≠ 0
1 + cos θ = `sqrt(3) sin theta`
`sqrt(3)sin theta - cos theta` = 1
Divide each term by 2
`sqrt(3)/2 sin theta - 1/2 cos theta = 1/2`
`sin pi/3 * sin theta - cos pi/3 * cos theta = 1/2`
`- (cos theta cos pi/3 - sin theta sin pi/3) = 1/2`
`cos (theta + pi/3) = - 1/2`
`cos (theta + pi/3) = cos (theta - pi/3)`
`cos (theta + pi/3) = cos ((3pi - pi)/3)`
`cos (theta + pi/3) = cos ((2pi)/3)`
The general solution is
`theta + pi/3 = 2"n"pi + (2pi)/3`, n ∈ Z
θ = `2"n"pi - pi/3 + (2pi)/3`, n ∈ Z
θ = `2"n"pi - pi/3 - (2pi)/3` or θ = `2"n"pi - pi/3 + (2pi)/3`
θ = `2"n"pi - (3pi)/3` or θ = `2"n"pi + (2pi - pi)/3`
θ = `2"n"pi - pi` or θ = `2"n"pi + pi/3`, n ∈ Z
θ = `(2"n" - 1)pi` or θ = `2"n"pi + pi/3`, n ∈ Z
Since sin θ ≠ 0, θ = (2n – 1)π is not possible
∴ θ = `2"n"pi + pi/3`, n ∈ Z
APPEARS IN
संबंधित प्रश्न
Find the general solution of the equation cos 3x + cos x – cos 2x = 0
Prove that
If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to
If tan θ + sec θ =ex, then cos θ equals
If sec x + tan x = k, cos x =
The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
\[\sqrt{3} \cos x + \sin x = 1\]
Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]
Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]
Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ
Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`
Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ * tan 130^circ)` =
Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)
In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.