Advertisements
Advertisements
प्रश्न
Solve the following equations:
cot θ + cosec θ = `sqrt(3)`
उत्तर
cot θ + cosec θ = `sqrt(3)`
`cos theta/sin theta + 1/sin theta = sqrt(3)`, sin θ ≠ 0
`(cos theta + 1)/sin theta = sqrt(3)`, sin θ ≠ 0
1 + cos θ = `sqrt(3) sin theta`
`sqrt(3)sin theta - cos theta` = 1
Divide each term by 2
`sqrt(3)/2 sin theta - 1/2 cos theta = 1/2`
`sin pi/3 * sin theta - cos pi/3 * cos theta = 1/2`
`- (cos theta cos pi/3 - sin theta sin pi/3) = 1/2`
`cos (theta + pi/3) = - 1/2`
`cos (theta + pi/3) = cos (theta - pi/3)`
`cos (theta + pi/3) = cos ((3pi - pi)/3)`
`cos (theta + pi/3) = cos ((2pi)/3)`
The general solution is
`theta + pi/3 = 2"n"pi + (2pi)/3`, n ∈ Z
θ = `2"n"pi - pi/3 + (2pi)/3`, n ∈ Z
θ = `2"n"pi - pi/3 - (2pi)/3` or θ = `2"n"pi - pi/3 + (2pi)/3`
θ = `2"n"pi - (3pi)/3` or θ = `2"n"pi + (2pi - pi)/3`
θ = `2"n"pi - pi` or θ = `2"n"pi + pi/3`, n ∈ Z
θ = `(2"n" - 1)pi` or θ = `2"n"pi + pi/3`, n ∈ Z
Since sin θ ≠ 0, θ = (2n – 1)π is not possible
∴ θ = `2"n"pi + pi/3`, n ∈ Z
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `tan x = sqrt3`
If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that
If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[2 T_6 - 3 T_4 + 1 = 0\]
Prove that:
If sec \[x = x + \frac{1}{4x}\], then sec x + tan x =
If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]
Solve the following equation:
`cosec x = 1 + cot x`
Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]
Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]
Write the general solutions of tan2 2x = 1.
The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is
Solve the following equations:
sin 5x − sin x = cos 3
Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0