हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Solve the following equations:cot θ + cosec θ = 3 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following equations:
cot θ + cosec θ = `sqrt(3)`

योग

उत्तर

cot θ + cosec θ = `sqrt(3)`

`cos theta/sin theta + 1/sin theta = sqrt(3)`, sin θ ≠ 0

`(cos theta + 1)/sin theta = sqrt(3)`, sin θ ≠ 0

1 + cos θ = `sqrt(3) sin theta`

`sqrt(3)sin theta - cos theta` = 1

Divide each term by 2

`sqrt(3)/2 sin theta - 1/2 cos theta = 1/2`

`sin  pi/3 * sin theta - cos  pi/3 * cos theta = 1/2`

`- (cos theta cos  pi/3 - sin theta sin  pi/3) = 1/2`

`cos (theta + pi/3) = - 1/2`

`cos (theta + pi/3) = cos (theta - pi/3)`

`cos (theta + pi/3) = cos ((3pi - pi)/3)`

`cos (theta + pi/3) = cos ((2pi)/3)`

The general solution is

`theta + pi/3 = 2"n"pi + (2pi)/3`, n ∈ Z

θ = `2"n"pi - pi/3 + (2pi)/3`, n ∈ Z

θ = `2"n"pi - pi/3 - (2pi)/3` or θ = `2"n"pi - pi/3 + (2pi)/3` 

θ = `2"n"pi - (3pi)/3` or θ = `2"n"pi + (2pi - pi)/3`

θ = `2"n"pi - pi` or θ = `2"n"pi + pi/3`, n ∈ Z

θ = `(2"n" - 1)pi` or θ = `2"n"pi + pi/3`, n ∈ Z

Since sin θ ≠ 0, θ = (2n – 1)π is not possible

∴ θ = `2"n"pi + pi/3`, n ∈ Z

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometry - Exercise 3.8 [पृष्ठ १३३]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 3 Trigonometry
Exercise 3.8 | Q 3. (viii) | पृष्ठ १३३

संबंधित प्रश्न

Find the principal and general solutions of the equation `tan x = sqrt3`


If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that

\[\frac{1 - \cos x + \sin x}{1 + \sin x}\] is also equal to a.

If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]


If \[T_n = \sin^n x + \cos^n x\], prove that  \[2 T_6 - 3 T_4 + 1 = 0\]


Prove that:

\[\sin\frac{8\pi}{3}\cos\frac{23\pi}{6} + \cos\frac{13\pi}{3}\sin\frac{35\pi}{6} = \frac{1}{2}\]

 


If sec \[x = x + \frac{1}{4x}\], then sec x + tan x = 

 

\[\sqrt{\frac{1 + \cos x}{1 - \cos x}}\] is equal to

 


If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then


Find the general solution of the following equation:

\[\sqrt{3} \sec x = 2\]

Solve the following equation:

\[2 \cos^2 x - 5 \cos x + 2 = 0\]

Solve the following equation:

\[4 \sin^2 x - 8 \cos x + 1 = 0\]

Solve the following equation:

\[\tan^2 x + \left( 1 - \sqrt{3} \right) \tan x - \sqrt{3} = 0\]

Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]


Solve the following equation:

`cosec  x = 1 + cot x`


Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]


Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]


Write the general solutions of tan2 2x = 1.

 

The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is 


Solve the following equations:
sin 5x − sin x = cos 3


Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×