हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Solve the following equations:tanθ+tan(θ+π3)+tan(θ+2π3)=3 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`

योग

उत्तर

Now `tan(theta + pi/3) = (tantheta + sqrt(3))/(1 - sqrt(3) tan theta)` and `tan(theta + (2pi)/3)`

= `(tantheta - sqrt(3))/(1 + sqrt(3) tan theta)`

So, `tan(theta + pi/3) + tan(theta + (2pi)/3)`

= `(tantheta + sqrt(3))/(1 - sqrt(3) tantheta) + (tan theta - sqrt(3))/(1 + sqrt(3) tantheta)`

= `((tan theta + sqrt(3))(1 + sqrt(3) tan theta) + (tan theta - sqrt(3))(1 - sqrt(3) tan theta))/(1 - 3tan^2theta)`

= `(tan theta + sqrt(3) + sqrt(3)tan^2theta + 3tantheta + tantheta - sqrt(3)tan^2theta - sqrt(3) + 3tantheta)/(1 - 3tan^2theta)`

= `(8tantheta)/(1 - 3tan^2theta)`

Given, `tantheta + tan(theta + pi/3) + tan(theta + (2pi)/3) = sqrt(3)`

⇒ `tan theta + (8tantheta)/(1 - 3tan^2theta) = sqrt(3)`

⇒ `(tantheta - 3tan^3theta + 8tantheta)/(1 - 3tan^2theta) = sqrt(3)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometry - Exercise 3.8 [पृष्ठ १३३]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 3 Trigonometry
Exercise 3.8 | Q 3. (ix) | पृष्ठ १३३

संबंधित प्रश्न

Find the principal and general solutions of the equation  `cot x = -sqrt3`


Find the general solution of the equation cos 4 x = cos 2 x


Find the general solution for each of the following equations sec2 2x = 1– tan 2x


If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]


Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]


Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]

 

Prove that:

\[\tan\frac{5\pi}{4}\cot\frac{9\pi}{4} + \tan\frac{17\pi}{4}\cot\frac{15\pi}{4} = 0\]

 


If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to


If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to


If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to


Find the general solution of the following equation:

\[cosec x = - \sqrt{2}\]

Solve the following equation:
\[\cot x + \tan x = 2\]

 


Solve the following equation:
 sin x tan x – 1 = tan x – sin x

 


Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].


In (0, π), the number of solutions of the equation ​ \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is 


If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =


Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 cos2x + 1 = – 3 cos x


If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2 


The minimum value of 3cosx + 4sinx + 8 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×