Advertisements
Advertisements
प्रश्न
Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`
उत्तर
Now `tan(theta + pi/3) = (tantheta + sqrt(3))/(1 - sqrt(3) tan theta)` and `tan(theta + (2pi)/3)`
= `(tantheta - sqrt(3))/(1 + sqrt(3) tan theta)`
So, `tan(theta + pi/3) + tan(theta + (2pi)/3)`
= `(tantheta + sqrt(3))/(1 - sqrt(3) tantheta) + (tan theta - sqrt(3))/(1 + sqrt(3) tantheta)`
= `((tan theta + sqrt(3))(1 + sqrt(3) tan theta) + (tan theta - sqrt(3))(1 - sqrt(3) tan theta))/(1 - 3tan^2theta)`
= `(tan theta + sqrt(3) + sqrt(3)tan^2theta + 3tantheta + tantheta - sqrt(3)tan^2theta - sqrt(3) + 3tantheta)/(1 - 3tan^2theta)`
= `(8tantheta)/(1 - 3tan^2theta)`
Given, `tantheta + tan(theta + pi/3) + tan(theta + (2pi)/3) = sqrt(3)`
⇒ `tan theta + (8tantheta)/(1 - 3tan^2theta) = sqrt(3)`
⇒ `(tantheta - 3tan^3theta + 8tantheta)/(1 - 3tan^2theta) = sqrt(3)`
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `cot x = -sqrt3`
Find the general solution of the equation cos 4 x = cos 2 x
Find the general solution for each of the following equations sec2 2x = 1– tan 2x
If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]
Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]
Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]
Prove that:
If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to
If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to
If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to
Find the general solution of the following equation:
Solve the following equation:
\[\cot x + \tan x = 2\]
Solve the following equation:
sin x tan x – 1 = tan x – sin x
Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].
In (0, π), the number of solutions of the equation \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 cos2x + 1 = – 3 cos x
If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2
The minimum value of 3cosx + 4sinx + 8 is ______.