Advertisements
Advertisements
प्रश्न
Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]
उत्तर
\[LHS = \left| \sqrt{\frac{1 - \sin x}{1 + \sin x}} \right| + \left| \sqrt{\frac{1 + \sin x}{1 - \sin x}} \right|\]
\[ = \left| \sqrt{\frac{\left( 1 - \sin x \right)\left( 1 - \sin x \right)}{\left( 1 + \sin x \right)\left( 1 - \sin x \right)}} \right| + \left| \sqrt{\frac{\left( 1 + \sin x \right)\left( 1 + \sin x \right)}{\left( 1 - \sin x \right)\left( 1 + \sin x \right)}} \right|\]
\[ = \left| \sqrt{\frac{\left( 1 - \sin x \right)\left( 1 - \sin x \right)}{\left( 1 + \sin x \right)\left( 1 - \sin x \right)}} \right| + \left| \sqrt{\frac{\left( 1 + \sin x \right)\left( 1 + \sin x \right)}{\left( 1 - \sin x \right)\left( 1 + \sin x \right)}} \right|\]
\[ = \left| \sqrt{\frac{\left( 1 - \sin x \right)^2}{1 - \sin^2 x}} \right| + \left| \sqrt{\frac{\left( 1 + \sin x \right)^2}{1 - \sin^2 x}} \right|\]
\[ = \left| \sqrt{\frac{\left( 1 - \sin x \right)^2}{\cos^2 x}} \right| + \left| \sqrt{\frac{\left( 1 + \sin x \right)^2}{\cos^2 x}} \right|\]
\[ = \left| \frac{1 - \sin x}{\cos x} \right| + \left| \frac{1 + \sin x}{\cos x} \right|\]
\[ = \left| \frac{1 - \sin x + 1 + \sin x}{\cos x} \right|\]
\[ = \left| \frac{2}{\cos x} \right|\]
\[ = - \frac{2}{\cos x} \left[ \because \frac{\pi}{2} < x < \pi \text{ and in the second quadrant, }\cos x \text{ is negative }\right]\]
= RHS
Hence proved .
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation sec x = 2
If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]
If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]
If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]
Prove that:
Prove that:
If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]
Solve the following equation:
3tanx + cot x = 5 cosec x
If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.
If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.
General solution of \[\tan 5 x = \cot 2 x\] is
The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is
Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 cos2x + 1 = – 3 cos x
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ
Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ
Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`
Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ * tan 130^circ)` =
Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`
If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.