हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Find the principal solution and general solution of the following:cot θ = 3 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`

योग

उत्तर

`1/cot theta = 1/sqrt(3)`

⇒ tan θ = `1/sqrt(3)`

The principal value of tan θ lies in `(- pi/2, pi/2)`

Since tan θ = `1/sqrt(3) > 0`

The principal value of tan θ lies in the I quadrant.

tan θ = `1/sqrt(3)`

= `tan (pi/6)`

θ = `pi/6` is the principal solution

The general solution of tan θ is

θ = `"n"pi + pi/6`, n ∈ Z

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometry - Exercise 3.8 [पृष्ठ १३३]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 3 Trigonometry
Exercise 3.8 | Q 1. (ii) | पृष्ठ १३३

संबंधित प्रश्न

Find the general solution of the equation cos 3x + cos x – cos 2x = 0


Prove that:

\[3\sin\frac{\pi}{6}\sec\frac{\pi}{3} - 4\sin\frac{5\pi}{6}\cot\frac{\pi}{4} = 1\]

 


Prove that

\[\frac{cosec(90^\circ + x) + \cot(450^\circ + x)}{cosec(90^\circ - x) + \tan(180^\circ - x)} + \frac{\tan(180^\circ + x) + \sec(180^\circ - x)}{\tan(360^\circ + x) - \sec( - x)} = 2\]

 


Prove that:

\[\sin\frac{10\pi}{3}\cos\frac{13\pi}{6} + \cos\frac{8\pi}{3}\sin\frac{5\pi}{6} = - 1\]

If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to


If sec x + tan x = k, cos x =


Find the general solution of the following equation:

\[\tan x = - \frac{1}{\sqrt{3}}\]

Find the general solution of the following equation:

\[\sin 9x = \sin x\]

Find the general solution of the following equation:

\[\sin 2x = \cos 3x\]

Solve the following equation:

\[\tan x + \tan 2x + \tan 3x = 0\]

Solve the following equation:

\[\tan x + \tan 2x = \tan 3x\]

Solve the following equation:
\[\cot x + \tan x = 2\]

 


If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.


If \[\tan px - \tan qx = 0\], then the values of θ form a series in

 


A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is

 

General solution of \[\tan 5 x = \cot 2 x\] is


Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`


Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`


In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×