Advertisements
Advertisements
प्रश्न
Find the general solution of the following equation:
उत्तर
We have:
⇒ \[\cos3x = \cos \left( \frac{\pi}{2} - 2x \right)\]
⇒ \[3x = 2n\pi \pm \left( \frac{\pi}{2} - 2x \right), n \in Z\]
On taking positive sign, we have:
\[3x = 2n\pi + \left( \frac{\pi}{2} - 2x \right)\]
⇒ \[5x = 2n\pi + \frac{\pi}{2}\]
⇒ \[x = \frac{2n\pi}{5} + \frac{\pi}{10}\]
⇒ \[x = (4n + 1)\frac{\pi}{10}\]
Now, on taking negative sign, we have:
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `cot x = -sqrt3`
If \[\tan x = \frac{a}{b},\] show that
If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that \[ab + a - b + 1 = 0\]
Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]
Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]
Prove that:
If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is
If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to
If tan θ + sec θ =ex, then cos θ equals
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]
Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]
Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0
Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]
and cos 2x are in A.P.
Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].
The smallest value of x satisfying the equation
If \[\tan px - \tan qx = 0\], then the values of θ form a series in
In (0, π), the number of solutions of the equation \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is
Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ
Solve the following equations:
sin θ + cos θ = `sqrt(2)`
Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)
Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to
Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to
Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`
If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2
In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.