Advertisements
Advertisements
प्रश्न
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
विकल्प
- \[\frac{21}{22}\]
- \[\frac{15}{16}\]
- \[\frac{44}{117}\]
- \[\frac{117}{44}\]
उत्तर
We have:
\[ cosec x + \cot x = \frac{11}{2} \left( 1 \right)\]
\[ \Rightarrow \frac{1}{cosecx + \cot x} = \frac{2}{11}\]
\[ \Rightarrow \frac{{cosec}^2 x - \cot^2 x}{cosecx + \cot x} = \frac{2}{11}\]
\[ \Rightarrow \frac{\left( cosec x + \cot x \right)\left( cosec x - \cot x \right)}{\left( cosec x + \cot x \right)} = \frac{2}{11}\]
\[ \therefore cosec A-\cot x = \frac{2}{11} \left( 2 \right)\]
Subtracting ( 2 ) from ( 1 ):
\[2\cot x = \frac{11}{2} - \frac{2}{11}\]
\[ \Rightarrow 2\cot x = \frac{121 - 4}{22}\]
\[ \Rightarrow 2\cot x = \frac{117}{22}\]
\[ \Rightarrow \cot x = \frac{117}{44}\]
\[ \Rightarrow \frac{1}{\tan x} = \frac{117}{44}\]
\[ \Rightarrow \tan x = \frac{44}{117}\]
APPEARS IN
संबंधित प्रश्न
Find the general solution of the equation sin x + sin 3x + sin 5x = 0
If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[2 T_6 - 3 T_4 + 1 = 0\]
Prove that: tan 225° cot 405° + tan 765° cot 675° = 0
Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0
Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]
Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]
In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0
Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]
If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to
If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to
The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sqrt{3} \cos x + \sin x = 1\]
Write the general solutions of tan2 2x = 1.
If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).
In (0, π), the number of solutions of the equation \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is
If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is
The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval
Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`
Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`
Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval
Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to
If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2