Advertisements
Advertisements
प्रश्न
Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]
उत्तर
\[ \frac{13\pi}{3} = 780^\circ, \frac{8\pi}{3} = 480^\circ, \frac{2\pi}{3} = 120^\circ, \frac{5\pi}{6} = 150^\circ\]
LHS = \[\sin \left( 780^\circ \right) \sin \left( 480^\circ \right) + \cos \left( 120^\circ \right) \sin\left( 150^\circ \right)\]
\[ = \sin \left( 90^\circ \times 8 + 60^\circ \right) \sin \left( 90^\circ \times 5 + 30^\circ \right) + \cos \left( 90^\circ \times 1 + 30^\circ \right) \sin \left( 90^\circ \times 1 + 60^\circ \right)\]
\[ = \sin \left( 60^\circ \right) \cos \left( 30^\circ \right) + \left[ - \sin \left( 30^\circ \right) \right] \cos \left( 60^\circ \right)\]
\[ = \sin \left( 60^\circ \right) \cos \left( 30^\circ \right) - \sin \left( 30^\circ \right) \cos\left( 60^\circ \right) \]
\[ = \frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2} - \frac{1}{2} \times \frac{1}{2}\]
\[ = \frac{3}{4} - \frac{1}{4}\]
\[ = \frac{1}{2}\]
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Find the general solution of cosec x = –2
If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x
If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]
Prove that: tan 225° cot 405° + tan 765° cot 675° = 0
Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]
Prove that:
Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]
Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]
If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to
If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]
The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is
Which of the following is incorrect?
Which of the following is correct?
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]
Solve the following equation:
3tanx + cot x = 5 cosec x
Write the general solutions of tan2 2x = 1.
If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.
Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].
If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).
A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval
A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is
The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
sin4x = sin2x
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 cos2x + 1 = – 3 cos x
Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ
Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0
Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ
Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1
Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`
Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to
Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval
Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to
If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2