हिंदी

Prove That: Sin 13 π 3 Sin 8 π 3 + Cos 2 π 3 Sin 5 π 6 = 1 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]

उत्तर

\[ \frac{13\pi}{3} = 780^\circ, \frac{8\pi}{3} = 480^\circ, \frac{2\pi}{3} = 120^\circ, \frac{5\pi}{6} = 150^\circ\]

 LHS = \[\sin \left( 780^\circ \right) \sin \left( 480^\circ \right) + \cos \left( 120^\circ \right) \sin\left( 150^\circ \right)\]

\[ = \sin \left( 90^\circ \times 8 + 60^\circ \right) \sin \left( 90^\circ \times 5 + 30^\circ \right) + \cos \left( 90^\circ \times 1 + 30^\circ \right) \sin \left( 90^\circ \times 1 + 60^\circ \right)\]

\[ = \sin \left( 60^\circ \right) \cos \left( 30^\circ \right) + \left[ - \sin \left( 30^\circ \right) \right] \cos \left( 60^\circ \right)\]

\[ = \sin \left( 60^\circ \right) \cos \left( 30^\circ \right) - \sin \left( 30^\circ \right) \cos\left( 60^\circ \right) \]

\[ = \frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2} - \frac{1}{2} \times \frac{1}{2}\]

\[ = \frac{3}{4} - \frac{1}{4}\]

\[ = \frac{1}{2}\]

 = RHS

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Trigonometric Functions - Exercise 5.3 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 5 Trigonometric Functions
Exercise 5.3 | Q 9.2 | पृष्ठ ४०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the general solution of cosec x = –2


If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x


If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]


Prove that:  tan 225° cot 405° + tan 765° cot 675° = 0


Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]


Prove that:

\[3\sin\frac{\pi}{6}\sec\frac{\pi}{3} - 4\sin\frac{5\pi}{6}\cot\frac{\pi}{4} = 1\]

 


Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]

 

Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]


If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to


If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]

 

The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is


Which of the following is incorrect?


Which of the following is correct?


Find the general solution of the following equation:

\[cosec x = - \sqrt{2}\]

Find the general solution of the following equation:

\[\sin x = \tan x\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3 = 0\]

Solve the following equation:

\[\sin x + \cos x = 1\]

Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]


Solve the following equation:
3tanx + cot x = 5 cosec x


Write the general solutions of tan2 2x = 1.

 

If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.

 

Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].


If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).


A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval


A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is

 

The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

sin4x = sin2x


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 cos2x + 1 = – 3 cos x


Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ


Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0


Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ


Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1


Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`


Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to


Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval


Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to


If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×