हिंदी

Find the General Solution of the Following Equation: C O S E C X = − √ 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the general solution of the following equation:

\[cosec x = - \sqrt{2}\]
योग

उत्तर

We have:

\[cosecx = - \sqrt{2}\] (or) 
\[\sin x = - \frac{1}{\sqrt{2}}\]
The value of x satisfying 
\[\sin x = - \frac{1}{\sqrt{2}}\] is \[- \frac{\pi}{4}\]
∴ \[\sin x = - \frac{1}{\sqrt{2}}\]
⇒ \[\sin x = \sin ( - \frac{\pi}{4})\]
⇒ \[x = n\pi + \left( - 1 \right)^n \left( - \frac{\pi}{4} \right)\]
 
\[n \in Z\]
⇒ \[x = n\pi + ( - 1 )^{n + 1} \frac{\pi}{4}, n \in Z\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric equations - Exercise 11.1 [पृष्ठ २१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 11 Trigonometric equations
Exercise 11.1 | Q 1.3 | पृष्ठ २१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the general solution of cosec x = –2


Find the general solution of the equation cos 3x + cos x – cos 2x = 0


Find the general solution of the equation sin 2x + cos x = 0


If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x


Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]


Prove that

\[\left\{ 1 + \cot x - \sec\left( \frac{\pi}{2} + x \right) \right\}\left\{ 1 + \cot x + \sec\left( \frac{\pi}{2} + x \right) \right\} = 2\cot x\]

 


Prove that

\[\frac{\tan (90^\circ - x) \sec(180^\circ - x) \sin( - x)}{\sin(180^\circ + x) \cot(360^\circ - x) cosec(90^\circ - x)} = 1\]

 


In a ∆ABC, prove that:
cos (A + B) + cos C = 0


Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]


Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]


If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to


If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to


If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is

 

The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is


Which of the following is incorrect?


Find the general solution of the following equation:

\[\tan mx + \cot nx = 0\]

Solve the following equation:

\[3 \cos^2 x - 2\sqrt{3} \sin x \cos x - 3 \sin^2 x = 0\]

Solve the following equation:

\[\cos x + \cos 3x - \cos 2x = 0\]

Solve the following equation:

\[\cos x \cos 2x \cos 3x = \frac{1}{4}\]

Solve the following equation:

\[\tan x + \tan 2x + \tan 3x = 0\]

Solve the following equation:
\[\cot x + \tan x = 2\]

 


Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2


Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]


Write the general solutions of tan2 2x = 1.

 

Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]

 and cos 2x are in A.P.


If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.


If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]

 


If \[\cot x - \tan x = \sec x\], then, x is equal to

 


The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.


Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

cos 2x = 1 − 3 sin x


Solve the following equations:
sin θ + cos θ = `sqrt(2)`


Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`


Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)


The minimum value of 3cosx + 4sinx + 8 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×