हिंदी

If Cot X − Tan X = Sec X , Then, X is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\cot x - \tan x = \sec x\], then, x is equal to

 

विकल्प

  • \[2 n\pi + \frac{3\pi}{2}, n \in Z\]

     

  • \[n\pi + \left( - 1 \right)^n \frac{\pi}{6}, n \in Z\]

  • \[n\pi + \frac{\pi}{2}, n \in Z\]

     

  • none of these.

MCQ
योग

उत्तर

\[n\pi + \frac{\pi}{2}, n \in Z\]
Given equation:
\[cot x - \tan x = sec x\]
\[ \Rightarrow \frac{\cos x}{\sin x} - \frac{\sin x}{\cos x} = \frac{1}{\cos x}\]
\[ \Rightarrow \frac{\cos^2 x - \sin^2 x}{\sin x \cos x} = \frac{1}{\cos x}\]
\[ \Rightarrow \cos^2 x - \sin^2 x = \sin x\]
\[ \Rightarrow (1 - \sin^2 x) - \sin^2 x = \sin x\]
\[ \Rightarrow 1 - 2 \sin^2 x = \sin x\]
\[ \Rightarrow 2 \sin^2 x + \sin x - 1 = 0\]
\[ \Rightarrow 2 \sin^2 x + 2 \sin x - \sin x - 1 = 0\]
\[ \Rightarrow 2 \sin x ( \sin x + 1) - 1 (\sin x + 1) = 0\]
\[ \Rightarrow (\sin x + 1) (2 \sin x - 1) = 0\]
\[\Rightarrow \sin x + 1 = 0\] or
\[2 \sin x - 1 = 0\]
\[\Rightarrow \sin x = - 1\] or
\[\sin x = \frac{1}{2}\]
Now, 
\[\sin x = - 1 \Rightarrow \sin x = \sin \frac{3\pi}{2} \Rightarrow x = m\pi + ( - 1 )^m \frac{3\pi}{2} , m \in Z\]
And,  
\[\sin x = \frac{1}{2} \Rightarrow \sin x = \sin \frac{\pi}{6} \Rightarrow x = n\pi + ( - 1 )^n \frac{\pi}{6} , n \in Z\]
∴ \[x = n\pi + ( - 1 )^n \frac{\pi}{6} , n \in Z\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric equations - Exercise 11.3 [पृष्ठ २७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 11 Trigonometric equations
Exercise 11.3 | Q 11 | पृष्ठ २७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the general solution of the equation sin 2x + cos x = 0


If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that

\[\frac{1 - \cos x + \sin x}{1 + \sin x}\] is also equal to a.

If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x


If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].


If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that  \[ab + a - b + 1 = 0\]


Prove that:

\[\sin\frac{8\pi}{3}\cos\frac{23\pi}{6} + \cos\frac{13\pi}{3}\sin\frac{35\pi}{6} = \frac{1}{2}\]

 


Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0


Prove that

\[\frac{cosec(90^\circ + x) + \cot(450^\circ + x)}{cosec(90^\circ - x) + \tan(180^\circ - x)} + \frac{\tan(180^\circ + x) + \sec(180^\circ - x)}{\tan(360^\circ + x) - \sec( - x)} = 2\]

 


In a ∆ABC, prove that:

\[\cos\left( \frac{A + B}{2} \right) = \sin\frac{C}{2}\]

 


If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to


sin6 A + cos6 A + 3 sin2 A cos2 A =


If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


If tan θ + sec θ =ex, then cos θ equals


Find the general solution of the following equation:

\[\sin 2x = \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\sin x = \tan x\]

Solve the following equation:

\[\tan^2 x + \left( 1 - \sqrt{3} \right) \tan x - \sqrt{3} = 0\]

Solve the following equation:

\[3 \cos^2 x - 2\sqrt{3} \sin x \cos x - 3 \sin^2 x = 0\]

Solve the following equation:

\[\cos x + \cos 3x - \cos 2x = 0\]

Solve the following equation:

\[\sqrt{3} \cos x + \sin x = 1\]


Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]


Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]


Solve the following equation:
3tanx + cot x = 5 cosec x


Write the set of values of a for which the equation

\[\sqrt{3} \sin x - \cos x = a\] has no solution.

If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]

 


The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.


If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are


Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`


Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`


Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ


Solve the following equations:
sin θ + cos θ = `sqrt(2)`


Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`


Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to


Solve the equation sin θ + sin 3θ + sin 5θ = 0


If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.


If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×