Advertisements
Advertisements
प्रश्न
If \[\cot x - \tan x = \sec x\], then, x is equal to
विकल्प
- \[2 n\pi + \frac{3\pi}{2}, n \in Z\]
\[n\pi + \left( - 1 \right)^n \frac{\pi}{6}, n \in Z\]
- \[n\pi + \frac{\pi}{2}, n \in Z\]
none of these.
उत्तर
Given equation:
\[cot x - \tan x = sec x\]
\[ \Rightarrow \frac{\cos x}{\sin x} - \frac{\sin x}{\cos x} = \frac{1}{\cos x}\]
\[ \Rightarrow \frac{\cos^2 x - \sin^2 x}{\sin x \cos x} = \frac{1}{\cos x}\]
\[ \Rightarrow \cos^2 x - \sin^2 x = \sin x\]
\[ \Rightarrow (1 - \sin^2 x) - \sin^2 x = \sin x\]
\[ \Rightarrow 1 - 2 \sin^2 x = \sin x\]
\[ \Rightarrow 2 \sin^2 x + \sin x - 1 = 0\]
\[ \Rightarrow 2 \sin^2 x + 2 \sin x - \sin x - 1 = 0\]
\[ \Rightarrow 2 \sin x ( \sin x + 1) - 1 (\sin x + 1) = 0\]
\[ \Rightarrow (\sin x + 1) (2 \sin x - 1) = 0\]
APPEARS IN
संबंधित प्रश्न
Find the general solution of the equation sin 2x + cos x = 0
If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that
If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x
If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].
If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that \[ab + a - b + 1 = 0\]
Prove that:
Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0
Prove that
In a ∆ABC, prove that:
If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to
sin6 A + cos6 A + 3 sin2 A cos2 A =
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
If tan θ + sec θ =ex, then cos θ equals
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sqrt{3} \cos x + \sin x = 1\]
Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]
Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]
Solve the following equation:
3tanx + cot x = 5 cosec x
Write the set of values of a for which the equation
If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]
The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.
If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are
Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`
Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`
Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ
Solve the following equations:
sin θ + cos θ = `sqrt(2)`
Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`
Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to
Solve the equation sin θ + sin 3θ + sin 5θ = 0
If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.