हिंदी

Write the Set of Values of a for Which the Equation √ 3 Sin X − Cos X = a Has No Solution. - Mathematics

Advertisements
Advertisements

प्रश्न

Write the set of values of a for which the equation

\[\sqrt{3} \sin x - \cos x = a\] has no solution.
योग

उत्तर

Given:

\[\sqrt{3} \sin x - \cos x = a\]

\[ \Rightarrow \frac{\sqrt{3} \sin x - \cos x}{2} = \frac{a}{2}\]

\[ \Rightarrow \frac{\sqrt{3}}{2} \sin x - \frac{1}{2} \cos x = \frac{a}{2}\]

\[ \Rightarrow \cos 30^\circ \sin x - \sin 30^\circ \cos x = \frac{a}{2}\]

\[ \Rightarrow \sin ( x - 30^\circ) = \frac{a}{2}\]

\[ \Rightarrow x - 30^\circ = \sin^{- 1} \left( \frac{a}{2} \right)\]

\[ \Rightarrow x = \sin^{- 1} \left( \frac{a}{2} \right) + 30^\circ\]
If \[a = 2\] or \[a = 2\] , then the equation will possess a solution.
For no solution,
\[a \in ( - \infty , - 2) \cup (2, \infty )\].

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric equations - Exercise 11.2 [पृष्ठ २६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 11 Trigonometric equations
Exercise 11.2 | Q 4 | पृष्ठ २६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the general solution of the equation cos 4 x = cos 2 x


Find the general solution of the equation cos 3x + cos x – cos 2x = 0


If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x


Prove that:  tan 225° cot 405° + tan 765° cot 675° = 0


Prove that:

\[3\sin\frac{\pi}{6}\sec\frac{\pi}{3} - 4\sin\frac{5\pi}{6}\cot\frac{\pi}{4} = 1\]

 


Prove that

\[\frac{\sin(180^\circ + x) \cos(90^\circ + x) \tan(270^\circ - x) \cot(360^\circ - x)}{\sin(360^\circ - x) \cos(360^\circ + x) cosec( - x) \sin(270^\circ + x)} = 1\]

 


Prove that

\[\frac{\tan (90^\circ - x) \sec(180^\circ - x) \sin( - x)}{\sin(180^\circ + x) \cot(360^\circ - x) cosec(90^\circ - x)} = 1\]

 


Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]


Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]


Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]


Prove that:

\[\tan\frac{5\pi}{4}\cot\frac{9\pi}{4} + \tan\frac{17\pi}{4}\cot\frac{15\pi}{4} = 0\]

 


If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to


If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to


If tan A + cot A = 4, then tan4 A + cot4 A is equal to


If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


Find the general solution of the following equation:

\[\cos x = - \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\tan px = \cot qx\]

 


Find the general solution of the following equation:

\[\sin 3x + \cos 2x = 0\]

Solve the following equation:

\[\tan^2 x + \left( 1 - \sqrt{3} \right) \tan x - \sqrt{3} = 0\]

Solve the following equation:

\[\cos 4 x = \cos 2 x\]

Solve the following equation:

\[\sin 2x - \sin 4x + \sin 6x = 0\]

Solve the following equation:

\[\tan x + \tan 2x = \tan 3x\]

Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0


Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].


If \[\tan px - \tan qx = 0\], then the values of θ form a series in

 


The smallest positive angle which satisfies the equation ​

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\] is

If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 cos2x + 1 = – 3 cos x


Solve the following equations:
sin 5x − sin x = cos 3


Solve the following equations:
sin θ + cos θ = `sqrt(2)`


Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`


Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ *  tan 130^circ)` =


Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x


In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×