Advertisements
Advertisements
प्रश्न
Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x
उत्तर
Given that: sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x
⇒ (sin3x + sinx) – 3sin2x = (cos3x + cosx) – 3cos2x
⇒ `2sin((3x + x)/2) . cos((3x - x)/2) - 3sin2x = 2cos((3x + x)/2).cos((3x - x)/2) - 3cos2x`
⇒ 2sin2x . cosx – 3sin2x = 2cos2x . cosx – 3cos2x
⇒ 2sin2x cosx – 2cos2x . cosx = 3sin2x – 3cos2x
⇒ 2cosx (sin2x – cos2x) = 3(sin2x – cos2x)
⇒ 2cosx(sin2x – cos2x) – 3(sin2x – cos2x) = 0
⇒ (sin2x – cos2x)(2cosx – 3) = 0
⇒ sin2x – cos2x = 0 and 2cosx – 3 ≠ 0 ....[∵ – 1 ≤ cos x ≤ 1]
⇒ `(sin2x)/(cos2x) - 1` = 0
⇒ tan2x = 1
⇒ tan2x = `tan pi/4`
⇒ 2x = `npi + pi/4`
∴ x = `(npi)/2 + pi/8`
Hence, the general solution of the equation is x = `(npi)/2 + pi/8`, n ∈ Z.
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `cot x = -sqrt3`
Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]
If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is
If tan A + cot A = 4, then tan4 A + cot4 A is equal to
If tan θ + sec θ =ex, then cos θ equals
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]
Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].
Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]
If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.
Write the number of points of intersection of the curves
Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]
and cos 2x are in A.P.
Write the number of points of intersection of the curves
If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.
The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is
The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is
Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`
Solve the following equations:
sin 5x − sin x = cos 3
Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ
Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)
Solve the equation sin θ + sin 3θ + sin 5θ = 0