हिंदी

Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x - Mathematics

Advertisements
Advertisements

प्रश्न

Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x

योग

उत्तर

Given that: sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x

⇒ (sin3x + sinx) – 3sin2x = (cos3x + cosx) – 3cos2x

⇒ `2sin((3x + x)/2) . cos((3x - x)/2) - 3sin2x = 2cos((3x + x)/2).cos((3x - x)/2) - 3cos2x`

⇒ 2sin2x . cosx – 3sin2x = 2cos2x . cosx – 3cos2x

⇒ 2sin2x cosx – 2cos2x . cosx = 3sin2x – 3cos2x

⇒ 2cosx (sin2x – cos2x) = 3(sin2x – cos2x)

⇒ 2cosx(sin2x – cos2x) – 3(sin2x – cos2x) = 0

⇒ (sin2x – cos2x)(2cosx – 3) = 0

⇒ sin2x – cos2x = 0 and 2cosx – 3 ≠ 0   ....[∵ – 1 ≤ cos x ≤ 1]

⇒ `(sin2x)/(cos2x) - 1` = 0

⇒ tan2x = 1

⇒ tan2x = `tan  pi/4`

⇒ 2x = `npi + pi/4`

∴ x = `(npi)/2 + pi/8`

Hence, the general solution of the equation is x = `(npi)/2 + pi/8`, n ∈ Z.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometric Functions - Exercise [पृष्ठ ५५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 3 Trigonometric Functions
Exercise | Q 28 | पृष्ठ ५५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the principal and general solutions of the equation  `cot x = -sqrt3`


Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]


If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to


If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to


If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is

 

If tan A + cot A = 4, then tan4 A + cot4 A is equal to


If tan θ + sec θ =ex, then cos θ equals


Find the general solution of the following equation:

\[cosec x = - \sqrt{2}\]

Find the general solution of the following equation:

\[\sec x = \sqrt{2}\]

Find the general solution of the following equation:

\[\cos 3x = \frac{1}{2}\]

Find the general solution of the following equation:

\[\tan x + \cot 2x = 0\]

Find the general solution of the following equation:

\[\tan 3x = \cot x\]

Find the general solution of the following equation:

\[\sin 3x + \cos 2x = 0\]

Solve the following equation:

\[\sin x + \cos x = 1\]

Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]


Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].


Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]


If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.

 

Write the number of points of intersection of the curves

\[2y = 1\] and \[y = \cos x, 0 \leq x \leq 2\pi\].
 

Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]

 and cos 2x are in A.P.


Write the number of points of intersection of the curves

\[2y = - 1 \text{ and }y = cosec x\]

If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.


The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is


The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is


Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`


Solve the following equations:
sin 5x − sin x = cos 3


Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ


Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)


Solve the equation sin θ + sin 3θ + sin 5θ = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×