Advertisements
Advertisements
प्रश्न
Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x
उत्तर
Given that: sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x
⇒ (sin3x + sinx) – 3sin2x = (cos3x + cosx) – 3cos2x
⇒ `2sin((3x + x)/2) . cos((3x - x)/2) - 3sin2x = 2cos((3x + x)/2).cos((3x - x)/2) - 3cos2x`
⇒ 2sin2x . cosx – 3sin2x = 2cos2x . cosx – 3cos2x
⇒ 2sin2x cosx – 2cos2x . cosx = 3sin2x – 3cos2x
⇒ 2cosx (sin2x – cos2x) = 3(sin2x – cos2x)
⇒ 2cosx(sin2x – cos2x) – 3(sin2x – cos2x) = 0
⇒ (sin2x – cos2x)(2cosx – 3) = 0
⇒ sin2x – cos2x = 0 and 2cosx – 3 ≠ 0 ....[∵ – 1 ≤ cos x ≤ 1]
⇒ `(sin2x)/(cos2x) - 1` = 0
⇒ tan2x = 1
⇒ tan2x = `tan pi/4`
⇒ 2x = `npi + pi/4`
∴ x = `(npi)/2 + pi/8`
Hence, the general solution of the equation is x = `(npi)/2 + pi/8`, n ∈ Z.
APPEARS IN
संबंधित प्रश्न
Find the general solution of cosec x = –2
Find the general solution for each of the following equations sec2 2x = 1– tan 2x
In a ∆ABC, prove that:
Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]
If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to
If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then x2 + y2 + z2 is independent of
If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is
If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
Solve the following equation:
3tanx + cot x = 5 cosec x
Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0
Write the number of points of intersection of the curves
Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]
and cos 2x are in A.P.
The number of values of x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]
If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is
General solution of \[\tan 5 x = \cot 2 x\] is
Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)
Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval
Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.