Advertisements
Advertisements
प्रश्न
If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to
पर्याय
\[- 2x, \frac{1}{2x}\]
\[- \frac{1}{2x}, 2x\]
2x
\[2x, \frac{1}{2x}\]
उत्तर
\[- 2x, \frac{1}{2x}\]
We have,
\[\tan x = x - \frac{1}{4x}\]
\[ \Rightarrow se c^2 x = 1 + \tan^2 x\]
\[ \Rightarrow se c^2 x = 1 + \left( x - \frac{1}{4x} \right)^2 \]
\[ \Rightarrow se c^2 x = x^2 + \frac{1}{16 x^2} + \frac{1}{2}\]
\[ \Rightarrow se c^2 x = \left( x + \frac{1}{4x} \right)^2 \]
\[ \therefore secx = \pm \left( x + \frac{1}{4x} \right)\]
\[ \Rightarrow secx - \tan x = \left( x + \frac{1}{4x} \right) - \left( x - \frac{1}{4x} \right) or - \left( x + \frac{1}{4x} \right) - \left( x - \frac{1}{4x} \right)\]
\[ = \frac{1}{2x}\text{ or }- 2x\]
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation sec x = 2
If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x
If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[2 T_6 - 3 T_4 + 1 = 0\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]
Prove that
Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]
Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\cot x + \tan x = 2\]
Write the number of points of intersection of the curves
Write the solution set of the equation
If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.
If \[\tan px - \tan qx = 0\], then the values of θ form a series in
The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is
General solution of \[\tan 5 x = \cot 2 x\] is
Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`
Solve the following equations:
sin θ + cos θ = `sqrt(2)`
Solve the following equations:
cot θ + cosec θ = `sqrt(3)`
Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ * tan 130^circ)` =
Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval
Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to