Advertisements
Advertisements
Question
If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to
Options
\[- 2x, \frac{1}{2x}\]
\[- \frac{1}{2x}, 2x\]
2x
\[2x, \frac{1}{2x}\]
Solution
\[- 2x, \frac{1}{2x}\]
We have,
\[\tan x = x - \frac{1}{4x}\]
\[ \Rightarrow se c^2 x = 1 + \tan^2 x\]
\[ \Rightarrow se c^2 x = 1 + \left( x - \frac{1}{4x} \right)^2 \]
\[ \Rightarrow se c^2 x = x^2 + \frac{1}{16 x^2} + \frac{1}{2}\]
\[ \Rightarrow se c^2 x = \left( x + \frac{1}{4x} \right)^2 \]
\[ \therefore secx = \pm \left( x + \frac{1}{4x} \right)\]
\[ \Rightarrow secx - \tan x = \left( x + \frac{1}{4x} \right) - \left( x - \frac{1}{4x} \right) or - \left( x + \frac{1}{4x} \right) - \left( x - \frac{1}{4x} \right)\]
\[ = \frac{1}{2x}\text{ or }- 2x\]
APPEARS IN
RELATED QUESTIONS
Find the principal and general solutions of the equation `tan x = sqrt3`
Find the general solution for each of the following equations sec2 2x = 1– tan 2x
If \[T_n = \sin^n x + \cos^n x\], prove that \[2 T_6 - 3 T_4 + 1 = 0\]
Prove that: tan 225° cot 405° + tan 765° cot 675° = 0
Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]
Prove that:
If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to
The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
`cosec x = 1 + cot x`
Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]
Solve the following equation:
sin x tan x – 1 = tan x – sin x
Write the number of points of intersection of the curves
Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]
and cos 2x are in A.P.
Write the number of points of intersection of the curves
If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.
The smallest value of x satisfying the equation
The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is
The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]
The smallest positive angle which satisfies the equation
The number of values of x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
Solve the following equations:
2cos 2x – 7 cos x + 3 = 0
Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval
Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to
In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.