English

If Tan X = X − 1 4 X , Then Sec X − Tan X is Equal to (A) − 2 X , 1 2 X (B) − 1 2 X , 2 X (C) 2x (D) 2 X , 1 2 X - Mathematics

Advertisements
Advertisements

Question

If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to

Options

  • \[- 2x, \frac{1}{2x}\]

  • \[- \frac{1}{2x}, 2x\]

  • 2x

  • \[2x, \frac{1}{2x}\]

MCQ

Solution

\[- 2x, \frac{1}{2x}\]
We have,
\[\tan x = x - \frac{1}{4x}\]
\[ \Rightarrow se c^2 x = 1 + \tan^2 x\]
\[ \Rightarrow se c^2 x = 1 + \left( x - \frac{1}{4x} \right)^2 \]
\[ \Rightarrow se c^2 x = x^2 + \frac{1}{16 x^2} + \frac{1}{2}\]
\[ \Rightarrow se c^2 x = \left( x + \frac{1}{4x} \right)^2 \]
\[ \therefore secx = \pm \left( x + \frac{1}{4x} \right)\]
\[ \Rightarrow secx - \tan x = \left( x + \frac{1}{4x} \right) - \left( x - \frac{1}{4x} \right) or - \left( x + \frac{1}{4x} \right) - \left( x - \frac{1}{4x} \right)\]
\[ = \frac{1}{2x}\text{ or }- 2x\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Trigonometric Functions - Exercise 5.5 [Page 41]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 5 Trigonometric Functions
Exercise 5.5 | Q 1 | Page 41

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the principal and general solutions of the equation `tan x = sqrt3`


Find the general solution for each of the following equations sec2 2x = 1– tan 2x


If \[T_n = \sin^n x + \cos^n x\], prove that  \[2 T_6 - 3 T_4 + 1 = 0\]


Prove that:  tan 225° cot 405° + tan 765° cot 675° = 0


Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]


Prove that:

\[\tan\frac{5\pi}{4}\cot\frac{9\pi}{4} + \tan\frac{17\pi}{4}\cot\frac{15\pi}{4} = 0\]

 


If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to


The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is

 

The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is

 

Find the general solution of the following equation:

\[\sec x = \sqrt{2}\]

Find the general solution of the following equation:

\[\tan x = - \frac{1}{\sqrt{3}}\]

Find the general solution of the following equation:

\[\cos 3x = \frac{1}{2}\]

Find the general solution of the following equation:

\[\tan px = \cot qx\]

 


Find the general solution of the following equation:

\[\sin 2x + \cos x = 0\]

Find the general solution of the following equation:

\[\sin x = \tan x\]

Solve the following equation:

\[\cos x + \cos 2x + \cos 3x = 0\]

Solve the following equation:

\[\sin 3x - \sin x = 4 \cos^2 x - 2\]

Solve the following equation:

\[\tan x + \tan 2x = \tan 3x\]

Solve the following equation:

`cosec  x = 1 + cot x`


Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]


Solve the following equation:
 sin x tan x – 1 = tan x – sin x

 


Write the number of points of intersection of the curves

\[2y = 1\] and \[y = \cos x, 0 \leq x \leq 2\pi\].
 

Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]

 and cos 2x are in A.P.


Write the number of points of intersection of the curves

\[2y = - 1 \text{ and }y = cosec x\]

If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.


The smallest value of x satisfying the equation

\[\sqrt{3} \left( \cot x + \tan x \right) = 4\] is 

The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is 


The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]


The smallest positive angle which satisfies the equation ​

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\] is

The number of values of ​x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]


If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =


If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 sin2x + 1 = 3 sin x


Solve the following equations:
2cos 2x – 7 cos x + 3 = 0


Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval


Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to


In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×