Advertisements
Advertisements
Question
Solve the following equations:
2cos 2x – 7 cos x + 3 = 0
Solution
2 cos2x – 7 cos x + 3 = 0
2 cos2x – 6 cos x – cos x + 3 = 0
2 cos x (cos x – 3) – 1(cos x – 3) = 0
(2 cos x – 1)(cos x – 3) = 0
2 cos x – 1 = 0 or cos x – 3 = 0
cos x = `1/2` or cos x = 3|
Since – 1 ≤ cos x ≤ 1, we have
cos x = 3 is not possible.
∴ cos x = `1/2`
cos x = `cos pi/3`
The general solution is x = `2"n"pi +- pi/3`, n ∈ Z
APPEARS IN
RELATED QUESTIONS
If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that
If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]
If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]
If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is
If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Write the number of points of intersection of the curves
The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
sin4x = sin2x
Solve the following equations:
cot θ + cosec θ = `sqrt(3)`
Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ * tan 130^circ)` =
Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to