Advertisements
Advertisements
Question
In a ∆ABC, if `sin"A"/sin"C" = (sin("A" - "B"))/(sin("B" - "C"))` prove that a2, b2, C2 are in Arithmetic Progression
Solution
`sin"A"/sin"C" = (sin("A" - "B"))/(sin("B" - "C"))`
sin A . sin(B – C) = sin C . sin(A – B)
sin(180° – (B + C)) . sin(B – C) = sin(180° – (A + B)) . sin(A – B)
sin(B + C) sin(B – C) = sin(A + B) sin(A – B) ......(1)
sin(B + C) . sin(B – C) = (sin B cos C + cos B sin C) × (sin B cos C – cos B sin C)
= (sin B cos C)2 – (cos B sin C)2
= sin2B cos2C – cos2B sin2C
= sin2B(1 – sin2C) – (1 – sin2B) sin2C
= sin2B – sin2B sin2C – sin2C + sin2B sin2C
sin( B + C) . sin( B – C) = sin2B – sin2C
Similarly,
sin(A + B) . sin(A – B) = sin2A – sin2B
(1) ⇒ sin2B – sin2C = sin2A – sin2B
sin2B + sin2B = sin2 A + sin2C
2 sin2B = sin2A + sin2C ......(2)
We have `"a"/sin"A" = "b"/sin"B" = "c"/sin"C"` = 2R
`"a"/sin"A"` = 2R ⇒ sin A = `"a"/(2"R")`
`"b"/sin"B"` = 2R ⇒ sin B = `"b"/(2"R")`
`"c"/sin"C"` = 2R ⇒ sin C = `"c"/(2"R")`
(2) ⇒ `2*("b"/(2"R"))^2 = ("a"/(2"R"))^2 + ("c"/(2"R"))^2`
`2 * "b"/(4"R"^2) = "a"^2/(4"R"^2) + "c"^2/(4"R"^2)`
2b2 = a2 + b2
∴ a2, b2, c2 are in arithmetic progression.
APPEARS IN
RELATED QUESTIONS
The angles of a triangle ABC, are in Arithmetic Progression and if b : c = `sqrt(3) : sqrt(2)`, find ∠A
In a ∆ABC, prove that `sin "B"/sin "C" = ("c" - "a"cos "B")/("b" - "a" cos"C")`
In an ∆ABC, prove that a cos A + b cos B + c cos C = 2a sin B sin C
In a ∆ABC, ∠A = 60°. Prove that b + c = `2"a" cos (("B" - "C")/2)`
In an ∆ABC, prove the following, `"a"sin ("A"/2 + "B") = ("b" + "c") sin "A"/2`
In a ∆ABC, prove the following, a(cos B + cos C) = `2("b" + "c") sin^2 "A"/2`
In a ∆ABC, prove the following, `("a"sin("B" - "C"))/("b"^2 - "c"^2) = ("b"sin("C" - "A"))/("c"^2 - "a"^2) = ("c"sin("A" - "B"))/("a"^2 - "b"^2)`
In a ∆ABC, prove the following, `("a"+ "b")/("a" - "b") = tan(("A" + "B")/2) cot(("A" - "B")/2)`
In a ∆ABC, prove that (a2 – b2 + c2) tan B = (a2 + b2 – c2) tan C
A rope of length 42 m is given. Find the largest area of the triangle formed by this rope and find the dimensions of the triangle so formed
Derive Projection formula from Law of cosines
Choose the correct alternative:
In a ∆ABC, if
(i) `sin "A"/2 sin "B"/2 sin "C"/2 > 0`
(ii) sin A sin B sin C > 0 then
In a ΔABC, let BC = 3. D is a point on BC such that BD = 2, Then the value of AB2 + 2AC2 – 3AD2 is ______.
In usual notation a ΔABC, if A, A1, A2, A3 be the area of the in-circle and ex-circles, then `1/sqrt(A_1) + 1/sqrt(A_2) + 1/sqrt(A_3)` is equal to ______.
In an equilateral triangle of side `2sqrt(3)` cm, the circum radius is ______.
Let a, b and c be the length of sides of a triangle ABC such that `(a + b)/7 = (b + c)/8 = (c + a)/9`. If r and R are the radius of incircle and radius of circumcircle of the triangle ABC, respectively, then the value of `R/r` is equal to ______.
If in a ΔABC, the altitudes from the vertices A, B, C on opposite sides are in H.P, then sin A, sin B, sin C are in ______