Advertisements
Advertisements
Question
In a ∆ABC, prove the following, a(cos B + cos C) = `2("b" + "c") sin^2 "A"/2`
Solution
We have `"a"/sin"A" = "b"/sin"B" ="c"/sin"C"` = 2R
`"a"/sin"A"` = 2R ⇒ a = 2R sin A
`"b"/sin"B"` = 2R ⇒ b = 2R sin B
`"c"/sin"C"` = 2R ⇒ c = 2R sin C
a(cos B + cos C) = `2("b" + "c") sin^2 "A"/2`
`(cos "B" + cos "C")/(2sin^2 "A"/2) ("b" + "c")/"a"` .....(1)
`("b" + "c")/"a" = (2"R" sin"B" + 2"R" sin"C")/(2"R" sin "A")`
= `(sin "B" + sin "C")/sin "A"`
= `(2sin (("B" + "C")/2) * cos (("B" - "C")/2))/(2 sin "A"/2 cos "A"/2)`
= `(sin (pi/2 - "A"/2) * cos ("B"/2 - "C"/2))/(sin "A"/2 * cos "A"/2)`
= `(cos ("A"/2) * cos ["B"/2 - (pi/2 - ("A"/2+ "B"/2))])/(sin "A"/ cos "A"/2)`
= `(cos ["B"/2 - pi/2 + "A"/2 + "B"/2])/(sin "A"/2)`
= `(cos["B" + "A"/2 - pi/2])/(sin "A"/2)`
= `(cos[pi/2 - ("A"/2 + "B")])/(sin "A"/2) cos(- theta)` = cos θ
= `(sin ("A"/2 + "B"))/(sin "A"/2)`
= `(2 sin "A"/2 * sin ("A"/2 + "B"))/(2sin "A"/2 * sin "A"/2)`
= `(2sin "A"/2 (sin "A"/2 cos "B" + cos "A"/2 sin "B"))/(2 sin "A"/2 sin "A"/2)`
= `(2sin^2 "A"/2 cos "B" + 2sin "A"/2 cos "A"/2 sin "B")/(2 sin^2 "A"/2)`
= `((1 - cos "A") cos "B" + sin "A" sin "B")/(2sin^2 "A"/2)`
= `(cos "B" - cos"A" cos"B" + sin"A" sin"B")/(2sin^2 "A"/2)`
= `(cos "B" - (cos "A" cos "B" + sin "A" sin "B"))/(2sin^2 "A"/2)`
= `(cos "B" - cos("A" + "B"))/(2 sin^2 "A"/2)`
= `(cos"B" - cos(180 - "C"))/(2sin^2 "A"/2)`
`("b"+ "c")/"a" = (cos"B" + cos"C")/(2sin^2 "A"/2)` .....(2)
From equations (1) and (2), result follows
APPEARS IN
RELATED QUESTIONS
The angles of a triangle ABC, are in Arithmetic Progression and if b : c = `sqrt(3) : sqrt(2)`, find ∠A
In a ∆ABC, prove that `sin "B"/sin "C" = ("c" - "a"cos "B")/("b" - "a" cos"C")`
In a ∆ABC, ∠A = 60°. Prove that b + c = `2"a" cos (("B" - "C")/2)`
In an ∆ABC, prove the following, `"a"sin ("A"/2 + "B") = ("b" + "c") sin "A"/2`
In a ∆ABC, prove the following, `("a"sin("B" - "C"))/("b"^2 - "c"^2) = ("b"sin("C" - "A"))/("c"^2 - "a"^2) = ("c"sin("A" - "B"))/("a"^2 - "b"^2)`
In a ∆ABC, prove the following, `("a"+ "b")/("a" - "b") = tan(("A" + "B")/2) cot(("A" - "B")/2)`
In a ∆ABC, prove that (a2 – b2 + c2) tan B = (a2 + b2 – c2) tan C
An Engineer has to develop a triangular shaped park with a perimeter 120 m in a village. The park to be developed must be of maximum area. Find out the dimensions of the park
A rope of length 42 m is given. Find the largest area of the triangle formed by this rope and find the dimensions of the triangle so formed
Derive Projection formula from Law of sines
Derive Projection formula from Law of cosines
Choose the correct alternative:
In a ∆ABC, if
(i) `sin "A"/2 sin "B"/2 sin "C"/2 > 0`
(ii) sin A sin B sin C > 0 then
A circle touches two of the smaller sides of a ΔABC (a < b < c) and has its centre on the greatest side. Then the radius of the circle is ______.
Let a, b and c be the length of sides of a triangle ABC such that `(a + b)/7 = (b + c)/8 = (c + a)/9`. If r and R are the radius of incircle and radius of circumcircle of the triangle ABC, respectively, then the value of `R/r` is equal to ______.
If in a ΔABC, the altitudes from the vertices A, B, C on opposite sides are in H.P, then sin A, sin B, sin C are in ______