Advertisements
Advertisements
Question
Derive Projection formula from Law of cosines
Solution
To prove
(a) a = b cos C + c cos B
(b) b = c cos A + a cos C
(c) c = a cos B + b cos A
Using Law of cosines.
We have cos A = `("b"^2 + "c"^2 - "a"^2)/(2"bc")`
cos B = `("c"^2 + "a"^2 - "b"^2)/(2"ca")`
cos C = `("a"^2 + "b"^2 - "c"^2)/(2"ab")`
(a) b cos C + cs B
= `"b"(("a"^2 + "b"^2 - "c"^2)/(2"ab")) + "c"(("c"^2 + "a"^2 - "b"^2)/(2"ca"))`
= `("a"^2 + "b"^2 - "c"^2)/(2"a") + ("c"^2 + "a"^2 - "b"^2)/(2"a")`
= `("a" + "b"^2 - "c"^2 + "c"^2 + "a"^2 - "b"^2)/(2"a")`
= `(2"a"^2)/(2"a")`
= a
∴ a = b cos C + c cos B
(b) c cos A + a cos C
= `"c"(("b"^2 + "c"^2 - "a"^2)/(2"bc")) + "a"(("a"^2 + "b"^2 - "c"^2)/(2"ab"))`
= `("b"^2 + "c"^2 - "a"^2)/(2"bc") + ("a"^2 + "b"^2 - "c"^2)/(2"ab")`
= `("b"^2 + "c"^2 - "a"^2 + "a"^2 + "b"^2 - "c"^2)/(2"b")`
= `(2"b"^2)/(2"b")`
= b
∴ b = c cos A + a cos C
(c) c = a cos B + b cos A
= `"a"(("c"^2 + "a"^2 - "b"^2)/(2"ca")) + "b"(("b"^2 + "c"^2 - "a"^2)/(2"bc"))`
= `("c"^2 + "a"^2 - "b"^2)/(2"c") + ("b"^2 + "c"^2 - "a"^2)/(2"c")`
= `("c"^2 + "a"^2 - "b"^2 + "b"^2 + "c"^2 - "a"^2)/(2"c")`
= `(2"c"^2)/(2"c")`
= c
∴ c = a cos B + b cos A
APPEARS IN
RELATED QUESTIONS
In a ∆ABC, if `sin"A"/sin"C" = (sin("A" - "B"))/(sin("B" - "C"))` prove that a2, b2, C2 are in Arithmetic Progression
The angles of a triangle ABC, are in Arithmetic Progression and if b : c = `sqrt(3) : sqrt(2)`, find ∠A
In a ∆ABC, if cos C = `sin "A"/(2sin"B")` show that the triangle is isosceles
In a ∆ABC, prove that `sin "B"/sin "C" = ("c" - "a"cos "B")/("b" - "a" cos"C")`
In an ∆ABC, prove that a cos A + b cos B + c cos C = 2a sin B sin C
In a ∆ABC, prove the following, a(cos B + cos C) = `2("b" + "c") sin^2 "A"/2`
In a ∆ABC, prove the following, `("a"^2 - "c"^2)/"b"^2 = (sin ("A" - "C"))/(sin("A" + "C"))`
In a ∆ABC, prove the following, `("a"sin("B" - "C"))/("b"^2 - "c"^2) = ("b"sin("C" - "A"))/("c"^2 - "a"^2) = ("c"sin("A" - "B"))/("a"^2 - "b"^2)`
In a ∆ABC, prove the following, `("a"+ "b")/("a" - "b") = tan(("A" + "B")/2) cot(("A" - "B")/2)`
In a ∆ABC, prove that (a2 – b2 + c2) tan B = (a2 + b2 – c2) tan C
A rope of length 42 m is given. Find the largest area of the triangle formed by this rope and find the dimensions of the triangle so formed
Derive Projection formula from Law of sines
Choose the correct alternative:
In a ∆ABC, if
(i) `sin "A"/2 sin "B"/2 sin "C"/2 > 0`
(ii) sin A sin B sin C > 0 then
In a ΔABC, let BC = 3. D is a point on BC such that BD = 2, Then the value of AB2 + 2AC2 – 3AD2 is ______.
In usual notation a ΔABC, if A, A1, A2, A3 be the area of the in-circle and ex-circles, then `1/sqrt(A_1) + 1/sqrt(A_2) + 1/sqrt(A_3)` is equal to ______.
Let a, b and c be the length of sides of a triangle ABC such that `(a + b)/7 = (b + c)/8 = (c + a)/9`. If r and R are the radius of incircle and radius of circumcircle of the triangle ABC, respectively, then the value of `R/r` is equal to ______.
If in a ΔABC, the altitudes from the vertices A, B, C on opposite sides are in H.P, then sin A, sin B, sin C are in ______