Advertisements
Advertisements
Question
In a ∆ABC, prove that (a2 – b2 + c2) tan B = (a2 + b2 – c2) tan C
Solution
We know `"a"/sin"A" = "b"/sin "B" = "c"/sin "C"` = 2R
`"a"/sin"A"` = 2R ⇒ a = 2R sin A
`"b"/sin"B"` = 2R ⇒ b = 2R sin B
`"c"/sin"C"` = 2R ⇒ c = 2R sin C
Also we know cos A = `("b"^2 + "c"^2 - "a"^2)/(2"bc")`
cos B = `("c"^2 + "a"^2 - "b"^2)/(2"ca")`
cos C = `("a"^2 + "b"^2 - "c"^2)/(2"ab")`
`("a"^2 + "b"^2 - "c"^2)/("a"^2 - "b"^2 + "c"^2) = ("a"^2 + "b"^2 - "c"^2)/("c"^2 + "a"^2 + "b"^2)`
= `(("a"^2 + "b"^2 - "c"^2)/(2"abc"))/(("c"^2 + "a"^2 - "b"^2)/(2"abc"))`
= `(1/"c" xx ("a"^2 + "b"^2 - "c"^2)/(2"ab"))/(1/"b" xx ("c"^2 + "a"^2 - "b"^2)/(2"ca"))`
= `(1/"c" xx cos "C")/(1/"b" xx cos "B")`
= `("b" cos "C")/("c" cos "B")`
= `(2"R" sin"B" cos"C")/(2"R" sin"C" cos"B")`
`("a"^2 + "b"^2 - "c"^2)/("a"^2 - "b"^2 + "c"^2) = sin"B"/sin"C" * cos"C"/sin"C"`
`("a"^2 + "b"^2 - "c"^2)/("a"^2 - "b"^2 + "c"^2)` = tan B . cot C
`("a"^2 + "B"^2 - "c"^2)/cot"C"` = (a2 – b2 + c2) tan B
(a2 + b2 + c2) tan C = (a2 – b2 + c2) tan B
APPEARS IN
RELATED QUESTIONS
In a ∆ABC, if `sin"A"/sin"C" = (sin("A" - "B"))/(sin("B" - "C"))` prove that a2, b2, C2 are in Arithmetic Progression
The angles of a triangle ABC, are in Arithmetic Progression and if b : c = `sqrt(3) : sqrt(2)`, find ∠A
In a ∆ABC, if cos C = `sin "A"/(2sin"B")` show that the triangle is isosceles
In a ∆ABC, prove that `sin "B"/sin "C" = ("c" - "a"cos "B")/("b" - "a" cos"C")`
In a ∆ABC, ∠A = 60°. Prove that b + c = `2"a" cos (("B" - "C")/2)`
In an ∆ABC, prove the following, `"a"sin ("A"/2 + "B") = ("b" + "c") sin "A"/2`
In a ∆ABC, prove the following, a(cos B + cos C) = `2("b" + "c") sin^2 "A"/2`
In a ∆ABC, prove the following, `("a"+ "b")/("a" - "b") = tan(("A" + "B")/2) cot(("A" - "B")/2)`
A rope of length 42 m is given. Find the largest area of the triangle formed by this rope and find the dimensions of the triangle so formed
Derive Projection formula from Law of sines
Choose the correct alternative:
In a ∆ABC, if
(i) `sin "A"/2 sin "B"/2 sin "C"/2 > 0`
(ii) sin A sin B sin C > 0 then
A circle touches two of the smaller sides of a ΔABC (a < b < c) and has its centre on the greatest side. Then the radius of the circle is ______.
In a ΔABC, let BC = 3. D is a point on BC such that BD = 2, Then the value of AB2 + 2AC2 – 3AD2 is ______.
In usual notation a ΔABC, if A, A1, A2, A3 be the area of the in-circle and ex-circles, then `1/sqrt(A_1) + 1/sqrt(A_2) + 1/sqrt(A_3)` is equal to ______.
In an equilateral triangle of side `2sqrt(3)` cm, the circum radius is ______.