Advertisements
Advertisements
Question
In a ∆ABC, prove the following, `("a"^2 - "c"^2)/"b"^2 = (sin ("A" - "C"))/(sin("A" + "C"))`
Solution
`("a"^2 - "c"^2)/"b"^2 = (sin ("A" - "C"))/(sin("A" + "C"))`
We know sin(A + B) . sin(A – B) = sin2A – sin2B
Also `"a"/sin"B" = "b"/sin"B" = "c"/sin"C"` = 2R
`"a"/sin"A"` = 2R ⇒ a = 2R sin A
`"b"/sin"B"` = 2R ⇒ b = 2R sin B
`"c"/sin"C"` = 2R ⇒ c = 2R sin C
`(sin ("A" - "C"))/(sin("A" + "C")) = (sin("A" + "C")sin("A" - "C"))/(sin("A" + "C") sin("A" + "C"))`
= `(sin^2"A" - sin^2"C")/((sin(180^circ - "B")) sin(180^circ - "B"))`
= `(4"R"^2 (sin^2"A" - sin^2"C"))/(4"R"^2 sin"B" * sin "B")`
= `(4"R"^2 sin^2"A" - 4"R"^2 sin^2"C")/(4"R"^2 sin^2"B")`
= `((2"R" sin"A")^2 - (2"R" sin"C")^2)/(2"R" sin"B")^2`
`(sin ("A" - "C"))/(sin("A" + "C")) = ("a"^2 - "c"^2)/"b"^2`
APPEARS IN
RELATED QUESTIONS
In a ∆ABC, if `sin"A"/sin"C" = (sin("A" - "B"))/(sin("B" - "C"))` prove that a2, b2, C2 are in Arithmetic Progression
The angles of a triangle ABC, are in Arithmetic Progression and if b : c = `sqrt(3) : sqrt(2)`, find ∠A
In a ∆ABC, if cos C = `sin "A"/(2sin"B")` show that the triangle is isosceles
In a ∆ABC, prove that `sin "B"/sin "C" = ("c" - "a"cos "B")/("b" - "a" cos"C")`
In an ∆ABC, prove that a cos A + b cos B + c cos C = 2a sin B sin C
In an ∆ABC, prove the following, `"a"sin ("A"/2 + "B") = ("b" + "c") sin "A"/2`
In a ∆ABC, prove the following, `("a"sin("B" - "C"))/("b"^2 - "c"^2) = ("b"sin("C" - "A"))/("c"^2 - "a"^2) = ("c"sin("A" - "B"))/("a"^2 - "b"^2)`
In a ∆ABC, prove the following, `("a"+ "b")/("a" - "b") = tan(("A" + "B")/2) cot(("A" - "B")/2)`
In a ∆ABC, prove that (a2 – b2 + c2) tan B = (a2 + b2 – c2) tan C
An Engineer has to develop a triangular shaped park with a perimeter 120 m in a village. The park to be developed must be of maximum area. Find out the dimensions of the park
A rope of length 42 m is given. Find the largest area of the triangle formed by this rope and find the dimensions of the triangle so formed
A circle touches two of the smaller sides of a ΔABC (a < b < c) and has its centre on the greatest side. Then the radius of the circle is ______.
In usual notation a ΔABC, if A, A1, A2, A3 be the area of the in-circle and ex-circles, then `1/sqrt(A_1) + 1/sqrt(A_2) + 1/sqrt(A_3)` is equal to ______.
In an equilateral triangle of side `2sqrt(3)` cm, the circum radius is ______.
Let a, b and c be the length of sides of a triangle ABC such that `(a + b)/7 = (b + c)/8 = (c + a)/9`. If r and R are the radius of incircle and radius of circumcircle of the triangle ABC, respectively, then the value of `R/r` is equal to ______.