Advertisements
Advertisements
Question
In a ∆ABC, prove the following, `("a"sin("B" - "C"))/("b"^2 - "c"^2) = ("b"sin("C" - "A"))/("c"^2 - "a"^2) = ("c"sin("A" - "B"))/("a"^2 - "b"^2)`
Solution
We know `"a"/sin"A" = "b"/sin"B" = "c"/sin"C"` = 2R
`"a"/sin"A"` = 2R ⇒ a = 2R sin A
`"b"/sin"B"` = 2R ⇒ b = 2R sin B
`"c"/sin"C"` = 2R ⇒ c = 2R sin C
Also sin(A + B) . sin(A – B) = sin2A – sin2B
`("a"sin("B" - "C"))/("b"^2 - "c"^2) = (2"R" sin"A" sin("B" - "C"))/((2"R" sin"B")^2 - (2"R" sin"C")^2`
= `(2"R" sin"A" sin("B" - "C"))/(4"R"^2 sin^2"B" - 4"R"^2 sin^2"C")`
= `(2"R" sin"A" sin("B" - "C"))/(4"R"^2 (sin^2"B" - sin^2"C"))`
= `(2"R" sin"A" sin("B" - "C"))/(4"R"^2 sin("B" + "C") sin("B" - "C"))`
= `sin"A"/(2"R" sin("B" + "C"))`
= `sin"A"/(2"R"sin(180^circ - "A"))`
= `sin"A"/(2"R" sin "A")`
`("a"sin("B" - "C"))/("b"^2 - "c"^2) = 1/(2"R")` ......(1)
`("b"sin("C" - "A"))/("c"^2 - "a"^2) = (2"R" sin"B" sin("C" - "A"))/((2"R" sin"C")^2 - (2"R"sin"A")^2`
= `(2"R" sin"B" sin("C" - "A"))/(4"R"^2 sin^2"C" - 4"R"^2 sin^2"A")`
= `(2"R" sin"B" * sin("C" - "A"))/(4"R"^2 (sin^2"C" - sin^2"A"))`
= `(sin"B" * sin("C" - "A"))/(2"R" sin("C" + "A") sin("C" - "A"))`
= `(sin"B" * sin("C" - "A"))/(2"R" * sin("C" + "A") * sin("C" - "A"))`
= `sin "B"/(2"R"sin("C" + "A"))`
= `sin "B"/(2"R" sin(180^circ - "B"))`
= `sin"B"/(2"R" sin "B")`
`("b"sin("C" - "A"))/("c"^2 - "a"^2) = 1/(2"R")` ......(2)
`("c"sin("A" - "B"))/("a"^2 - "b"^2) = (2"R" sin"C" sin("A" - "B"))/((2"R" sin"A")^2 - (2"R"sin "B")^2)`
= `(2"R" sin"C" sin("A" - "B"))/(4"R"^2 sin^2"A" - 4"R"^2 sin^2"B")`
= `(2"" sin"C" sin("A" - "B"))/(4"R"^2 (sin^2"A" - sin^2"B"))`
= `(2"R" sin"C" sin("A" - "B"))/(4"R"^2 sin("A" + "B") sin("A" - "B"))`
= `sin"C"/(2"R"sin("A" +"B"))`
= `sin"C"/(2"R"sin(180^circ - "C"))`
= `sin"C"/(2"R" sin"C")`
`("c"sin("A" - "B"))/("a"^2 - "b"^2) = 1/(2"R")` ......(3)
From equations (1), (2) and (3)
`("a"sin("B" - "C"))/("b"^2 - "c"^2) = ("b"sin("C" - "A"))/("c"^2 - "a"^2) = ("c"sin("A" - "B"))/("a"^2 - "b"^2)`
APPEARS IN
RELATED QUESTIONS
In a ∆ABC, if `sin"A"/sin"C" = (sin("A" - "B"))/(sin("B" - "C"))` prove that a2, b2, C2 are in Arithmetic Progression
The angles of a triangle ABC, are in Arithmetic Progression and if b : c = `sqrt(3) : sqrt(2)`, find ∠A
In a ∆ABC, if cos C = `sin "A"/(2sin"B")` show that the triangle is isosceles
In a ∆ABC, prove that `sin "B"/sin "C" = ("c" - "a"cos "B")/("b" - "a" cos"C")`
In a ∆ABC, ∠A = 60°. Prove that b + c = `2"a" cos (("B" - "C")/2)`
In a ∆ABC, prove the following, `("a"^2 - "c"^2)/"b"^2 = (sin ("A" - "C"))/(sin("A" + "C"))`
In a ∆ABC, prove the following, `("a"+ "b")/("a" - "b") = tan(("A" + "B")/2) cot(("A" - "B")/2)`
An Engineer has to develop a triangular shaped park with a perimeter 120 m in a village. The park to be developed must be of maximum area. Find out the dimensions of the park
Derive Projection formula from Law of sines
Derive Projection formula from Law of cosines
Choose the correct alternative:
In a ∆ABC, if
(i) `sin "A"/2 sin "B"/2 sin "C"/2 > 0`
(ii) sin A sin B sin C > 0 then
A circle touches two of the smaller sides of a ΔABC (a < b < c) and has its centre on the greatest side. Then the radius of the circle is ______.
In a ΔABC, let BC = 3. D is a point on BC such that BD = 2, Then the value of AB2 + 2AC2 – 3AD2 is ______.
In usual notation a ΔABC, if A, A1, A2, A3 be the area of the in-circle and ex-circles, then `1/sqrt(A_1) + 1/sqrt(A_2) + 1/sqrt(A_3)` is equal to ______.
If in a ΔABC, the altitudes from the vertices A, B, C on opposite sides are in H.P, then sin A, sin B, sin C are in ______