मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

In a ∆ABC, prove the following, aBCbcbCAcacABabasin(B-C)b2-c2=bsin(C-A)c2-a2=csin(A-B)a2-b2 - Mathematics

Advertisements
Advertisements

प्रश्न

In a ∆ABC, prove the following, `("a"sin("B" - "C"))/("b"^2 - "c"^2) = ("b"sin("C" - "A"))/("c"^2 - "a"^2) = ("c"sin("A" - "B"))/("a"^2 - "b"^2)`

बेरीज

उत्तर

We know `"a"/sin"A" = "b"/sin"B" = "c"/sin"C"` = 2R

`"a"/sin"A"` = 2R ⇒ a = 2R sin A

`"b"/sin"B"` = 2R ⇒ b = 2R sin B

`"c"/sin"C"` = 2R ⇒ c = 2R sin C
Also sin(A + B) . sin(A – B) = sin2A – sin2B

`("a"sin("B" - "C"))/("b"^2 - "c"^2) = (2"R" sin"A" sin("B" - "C"))/((2"R" sin"B")^2 - (2"R" sin"C")^2`

= `(2"R" sin"A" sin("B" - "C"))/(4"R"^2 sin^2"B" - 4"R"^2 sin^2"C")`

= `(2"R" sin"A" sin("B" - "C"))/(4"R"^2 (sin^2"B" - sin^2"C"))`

= `(2"R" sin"A" sin("B" - "C"))/(4"R"^2 sin("B" + "C") sin("B" - "C"))`

= `sin"A"/(2"R" sin("B" + "C"))`

= `sin"A"/(2"R"sin(180^circ - "A"))`

= `sin"A"/(2"R" sin "A")`

`("a"sin("B" - "C"))/("b"^2 - "c"^2) = 1/(2"R")`  ......(1)

`("b"sin("C" - "A"))/("c"^2 - "a"^2) = (2"R" sin"B" sin("C" - "A"))/((2"R" sin"C")^2 - (2"R"sin"A")^2`

= `(2"R" sin"B" sin("C" - "A"))/(4"R"^2 sin^2"C" - 4"R"^2 sin^2"A")`

= `(2"R" sin"B" * sin("C" - "A"))/(4"R"^2 (sin^2"C" - sin^2"A"))`

= `(sin"B" * sin("C" - "A"))/(2"R" sin("C" + "A") sin("C" - "A"))`

= `(sin"B" * sin("C" - "A"))/(2"R" * sin("C" + "A") * sin("C" - "A"))`

= `sin "B"/(2"R"sin("C" + "A"))`

= `sin "B"/(2"R" sin(180^circ - "B"))`

= `sin"B"/(2"R" sin "B")`

`("b"sin("C" - "A"))/("c"^2 - "a"^2) = 1/(2"R")`  ......(2)

`("c"sin("A" - "B"))/("a"^2 - "b"^2) = (2"R" sin"C" sin("A" - "B"))/((2"R" sin"A")^2 - (2"R"sin "B")^2)`

= `(2"R" sin"C" sin("A" - "B"))/(4"R"^2 sin^2"A" - 4"R"^2 sin^2"B")`

= `(2"" sin"C" sin("A" - "B"))/(4"R"^2 (sin^2"A" - sin^2"B"))`

= `(2"R" sin"C" sin("A" - "B"))/(4"R"^2 sin("A" + "B") sin("A" - "B"))`

= `sin"C"/(2"R"sin("A" +"B"))`

= `sin"C"/(2"R"sin(180^circ - "C"))`

= `sin"C"/(2"R" sin"C")`

`("c"sin("A" - "B"))/("a"^2 - "b"^2) = 1/(2"R")`  ......(3)

From  equations (1), (2) and (3)

`("a"sin("B" - "C"))/("b"^2 - "c"^2) = ("b"sin("C" - "A"))/("c"^2 - "a"^2) = ("c"sin("A" - "B"))/("a"^2 - "b"^2)`

shaalaa.com
Properties of Triangle
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Trigonometry - Exercise 3.9 [पृष्ठ १४३]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 3 Trigonometry
Exercise 3.9 | Q 7. (iv) | पृष्ठ १४३

संबंधित प्रश्‍न

In a ∆ABC, if `sin"A"/sin"C" = (sin("A" - "B"))/(sin("B" - "C"))` prove that a2, b2, C2 are in Arithmetic Progression


The angles of a triangle ABC, are in Arithmetic Progression and if b : c = `sqrt(3) : sqrt(2)`, find ∠A


In an ∆ABC, prove that a cos A + b cos B + c cos C = 2a sin B sin C


In an ∆ABC, prove the following, `"a"sin ("A"/2 + "B") = ("b" + "c") sin  "A"/2`


In a ∆ABC, prove the following, `("a"^2 - "c"^2)/"b"^2 = (sin ("A" - "C"))/(sin("A" + "C"))`


In a ∆ABC, prove the following, `("a"+ "b")/("a" - "b") = tan(("A" + "B")/2) cot(("A" - "B")/2)`


In a ∆ABC, prove that (a2 – b2 + c2) tan B = (a2 + b2 – c2) tan C


An Engineer has to develop a triangular shaped park with a perimeter 120 m in a village. The park to be developed must be of maximum area. Find out the dimensions of the park


A rope of length 42 m is given. Find the largest area of the triangle formed by this rope and find the dimensions of the triangle so formed


Derive Projection formula from Law of sines


Choose the correct alternative:
In a ∆ABC, if
(i) `sin  "A"/2 sin  "B"/2 sin  "C"/2 > 0`
(ii) sin A sin B sin C > 0 then


A circle touches two of the smaller sides of a ΔABC (a < b < c) and has its centre on the greatest side. Then the radius of the circle is ______.


In a ΔABC, let BC = 3. D is a point on BC such that BD = 2, Then the value of AB2 + 2AC2 – 3AD2 is ______.


In usual notation a ΔABC, if A, A1, A2, A3 be the area of the in-circle and ex-circles, then `1/sqrt(A_1) + 1/sqrt(A_2) + 1/sqrt(A_3)` is equal to ______.


In an equilateral triangle of side `2sqrt(3)` cm, the circum radius is ______.


Let a, b and c be the length of sides of a triangle ABC such that `(a + b)/7 = (b + c)/8 = (c + a)/9`. If r and R are the radius of incircle and radius of circumcircle of the triangle ABC, respectively, then the value of `R/r` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×