Advertisements
Advertisements
प्रश्न
In a ∆ABC, if `sin"A"/sin"C" = (sin("A" - "B"))/(sin("B" - "C"))` prove that a2, b2, C2 are in Arithmetic Progression
उत्तर
`sin"A"/sin"C" = (sin("A" - "B"))/(sin("B" - "C"))`
sin A . sin(B – C) = sin C . sin(A – B)
sin(180° – (B + C)) . sin(B – C) = sin(180° – (A + B)) . sin(A – B)
sin(B + C) sin(B – C) = sin(A + B) sin(A – B) ......(1)
sin(B + C) . sin(B – C) = (sin B cos C + cos B sin C) × (sin B cos C – cos B sin C)
= (sin B cos C)2 – (cos B sin C)2
= sin2B cos2C – cos2B sin2C
= sin2B(1 – sin2C) – (1 – sin2B) sin2C
= sin2B – sin2B sin2C – sin2C + sin2B sin2C
sin( B + C) . sin( B – C) = sin2B – sin2C
Similarly,
sin(A + B) . sin(A – B) = sin2A – sin2B
(1) ⇒ sin2B – sin2C = sin2A – sin2B
sin2B + sin2B = sin2 A + sin2C
2 sin2B = sin2A + sin2C ......(2)
We have `"a"/sin"A" = "b"/sin"B" = "c"/sin"C"` = 2R
`"a"/sin"A"` = 2R ⇒ sin A = `"a"/(2"R")`
`"b"/sin"B"` = 2R ⇒ sin B = `"b"/(2"R")`
`"c"/sin"C"` = 2R ⇒ sin C = `"c"/(2"R")`
(2) ⇒ `2*("b"/(2"R"))^2 = ("a"/(2"R"))^2 + ("c"/(2"R"))^2`
`2 * "b"/(4"R"^2) = "a"^2/(4"R"^2) + "c"^2/(4"R"^2)`
2b2 = a2 + b2
∴ a2, b2, c2 are in arithmetic progression.
APPEARS IN
संबंधित प्रश्न
The angles of a triangle ABC, are in Arithmetic Progression and if b : c = `sqrt(3) : sqrt(2)`, find ∠A
In a ∆ABC, if cos C = `sin "A"/(2sin"B")` show that the triangle is isosceles
In a ∆ABC, prove that `sin "B"/sin "C" = ("c" - "a"cos "B")/("b" - "a" cos"C")`
In a ∆ABC, ∠A = 60°. Prove that b + c = `2"a" cos (("B" - "C")/2)`
In an ∆ABC, prove the following, `"a"sin ("A"/2 + "B") = ("b" + "c") sin "A"/2`
In a ∆ABC, prove the following, a(cos B + cos C) = `2("b" + "c") sin^2 "A"/2`
In a ∆ABC, prove the following, `("a"^2 - "c"^2)/"b"^2 = (sin ("A" - "C"))/(sin("A" + "C"))`
In a ∆ABC, prove the following, `("a"+ "b")/("a" - "b") = tan(("A" + "B")/2) cot(("A" - "B")/2)`
An Engineer has to develop a triangular shaped park with a perimeter 120 m in a village. The park to be developed must be of maximum area. Find out the dimensions of the park
Derive Projection formula from Law of sines
Derive Projection formula from Law of cosines
Choose the correct alternative:
In a ∆ABC, if
(i) `sin "A"/2 sin "B"/2 sin "C"/2 > 0`
(ii) sin A sin B sin C > 0 then
A circle touches two of the smaller sides of a ΔABC (a < b < c) and has its centre on the greatest side. Then the radius of the circle is ______.
In a ΔABC, let BC = 3. D is a point on BC such that BD = 2, Then the value of AB2 + 2AC2 – 3AD2 is ______.
In usual notation a ΔABC, if A, A1, A2, A3 be the area of the in-circle and ex-circles, then `1/sqrt(A_1) + 1/sqrt(A_2) + 1/sqrt(A_3)` is equal to ______.
In an equilateral triangle of side `2sqrt(3)` cm, the circum radius is ______.
If in a ΔABC, the altitudes from the vertices A, B, C on opposite sides are in H.P, then sin A, sin B, sin C are in ______