Advertisements
Advertisements
प्रश्न
A circle touches two of the smaller sides of a ΔABC (a < b < c) and has its centre on the greatest side. Then the radius of the circle is ______.
पर्याय
`(a - b - c)/2`
`(abc)/2`
`(2Δ)/(a + b)`
`(a + b + c)/2`
MCQ
रिकाम्या जागा भरा
उत्तर
A circle touches two of the smaller sides of a ΔABC (a < b < c) and has its centre on the greatest side. Then the radius of the circle is `underlinebb((2Δ)/(a + b))`.
Explanation:
Let OD = OE = r
In ΔODA
`(OD)/(OA)` = sinA
⇒ OA = `r/sinA` ...(1)
In ΔOEB
`(OE)/(OB)` = sinB
⇒ OB = `r/sinB` ...(2)
Adding (1) and (2)
OA + OB = c = `r/sinA + r/sinB`
⇒ `r((bc)/(2Δ) + (ac)/(2Δ))` = c ...[∵ Δ = `1/2`bc sin A]
⇒ r = `(2Δ)/(b + a)`
shaalaa.com
Properties of Triangle
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?