Advertisements
Advertisements
प्रश्न
Solve the following equations:
2cos 2x – 7 cos x + 3 = 0
उत्तर
2 cos2x – 7 cos x + 3 = 0
2 cos2x – 6 cos x – cos x + 3 = 0
2 cos x (cos x – 3) – 1(cos x – 3) = 0
(2 cos x – 1)(cos x – 3) = 0
2 cos x – 1 = 0 or cos x – 3 = 0
cos x = `1/2` or cos x = 3|
Since – 1 ≤ cos x ≤ 1, we have
cos x = 3 is not possible.
∴ cos x = `1/2`
cos x = `cos pi/3`
The general solution is x = `2"n"pi +- pi/3`, n ∈ Z
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation sec x = 2
Find the general solution of the equation cos 3x + cos x – cos 2x = 0
If \[T_n = \sin^n x + \cos^n x\], prove that \[2 T_6 - 3 T_4 + 1 = 0\]
Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]
If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to
If sec \[x = x + \frac{1}{4x}\], then sec x + tan x =
sin6 A + cos6 A + 3 sin2 A cos2 A =
The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is
Which of the following is correct?
Solve the following equation:
\[\cot x + \tan x = 2\]
Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]
Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
sin4x = sin2x
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
cos 2x = 1 − 3 sin x
Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0
Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`
Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x