Advertisements
Advertisements
प्रश्न
Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]
उत्तर
\[90^\circ = \frac{\pi}{2}\]
We have:
\[ cosec\left( 90^\circ + \theta \right) + x \cos \theta \cot\left( 90^\circ + \theta \right) = \sin\left( 90^\circ + \theta \right)\]
\[ \Rightarrow \sec \theta + x \cos \theta \left[ - \tan \theta \right] = \cos \theta\]
\[ \Rightarrow \sec \theta - x cos\theta tan\theta = \cos \theta\]
\[ \Rightarrow \sec \theta - x cos\theta \times \frac{\sin \theta}{\cos \theta} = \cos \theta\]
\[ \Rightarrow \sec \theta - x \sin\theta = \cos \theta\]
\[ \Rightarrow \sec \theta - \cos \theta = x \sin\theta$\]
\[ \Rightarrow \frac{1}{\cos \theta} - cos\theta = x \sin\theta\]
\[ \Rightarrow \frac{1 - \cos^2 \theta}{\cos \theta} = x \sin\theta$\]
\[ \Rightarrow \frac{\sin^2 \theta}{cos\theta} = x \sin\theta\]
\[ \Rightarrow \frac{\sin^2 \theta}{\cos \theta \sin \theta} = x\]
\[ \Rightarrow \frac{\sin \theta}{\cos \theta} = x\]
\[ \Rightarrow \tan\theta = x\]
\[ \therefore x = \tan\theta\]
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation sec x = 2
Find the general solution of the equation cos 3x + cos x – cos 2x = 0
If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x
Prove that:
Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0
Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]
Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]
In a ∆ABC, prove that:
cos (A + B) + cos C = 0
In a ∆ABC, prove that:
Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]
Prove that:
If tan A + cot A = 4, then tan4 A + cot4 A is equal to
If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]
Solve the following equation:
`cosec x = 1 + cot x`
Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]
Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2
Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]
In (0, π), the number of solutions of the equation \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is
Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`
Solve the following equations:
sin 5x − sin x = cos 3
Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ
Solve the following equations:
sin θ + cos θ = `sqrt(2)`
Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.
Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0
Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x