Advertisements
Advertisements
प्रश्न
Prove that:
उत्तर
\[ \frac{5\pi}{4} = 225^\circ, \frac{9\pi}{4} = 405^\circ, \frac{17\pi}{4} = 765^\circ, \frac{15\pi}{4} = 675^\circ\]
LHS = \[\tan 225^\circ\cot 405^\circ + \tan 765^\circ \cot 675^\circ\]
\[ = \tan\left( 90^\circ \times 2 + 45^\circ \right)\cot\left( 90^\circ \times 4 + 45^\circ \right) + \tan\left( 90^\circ \times 8 + 45^\circ \right) \cot\left( 90^\circ \times 7 + 45^\circ \right) \]
\[ = \tan 45^\circ\cot 45^\circ + \tan 45^\circ \left[ - \tan45^\circ \right]\]
\[ = \tan 45^\circ\cot 45^\circ - \tan 45^\circ \tan 45^\circ\]
\[ = 1 \times 1 - 1 \times 1\]
\[ = 1 - 1\]
\[ = 0\]
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `tan x = sqrt3`
Find the general solution of cosec x = –2
Find the general solution of the equation sin 2x + cos x = 0
Find the general solution of the equation sin x + sin 3x + sin 5x = 0
If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that
If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x
If \[\tan x = \frac{a}{b},\] show that
Prove that:
Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0
Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]
Prove that
Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]
Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]
If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
sin6 A + cos6 A + 3 sin2 A cos2 A =
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to
If tan θ + sec θ =ex, then cos θ equals
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2
If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.
Write the number of points of intersection of the curves
The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]
In (0, π), the number of solutions of the equation \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is
The number of values of x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]
Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`
Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.
The minimum value of 3cosx + 4sinx + 8 is ______.
In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.